The European Union funded project SAMS (Smart Apiculture Management Services) enhances international cooperation of ICT (Information and Communication Technologies) and sustainable agriculture between EU and developing countries in pursuit of the EU commitment to the UN Sustainable Development Goal “End hunger, achieve food security and improved nutrition and promote sustainable agriculture”. The project consortium comprises four partners from Europe (two from Germany, Austria, and Latvia) and two partners each from Ethiopia and Indonesia. Beekeeping with small-scale operations provides suitable innovation labs for the demonstration and dissemination of cost-effective and easy-to-use open source ICT applications in developing countries. SAMS allows active monitoring and remote sensing of bee colonies and beekeeping by developing an ICT solution supporting the management of bee health and bee productivity as well as a role model for effective international cooperation. By following the user centered design (UCD) approach, SAMS addresses requirements of end-user communities on beekeeping in developing countries, and includes findings in its technological improvements and adaptation as well as in innovative services and business creation based on advanced ICT and remote sensing technologies. SAMS enhances the production of bee products, creates jobs (particularly youths/women), triggers investments, and establishes knowledge exchange through networks and initiated partnerships.
The loss of bee colonies in recent years is a global phenomenon and Ethiopia is not exceptional. No single cause has been identified for the lose interactions of biotic and abiotic factors are speculated for the global bee colony decline. Following global warming and human population fast growth, natural forests which are used to be habitat and sources bee feed has been destroyed at fast rate. Also the contribution of bee pests and diseases is thought considerable for bee colony diminishing. Recently (2010), globally identify as causing bee colony dames bee mite varroa destructor has been reported in most beekeeping regions of Ethiopia. However, the effects of mite on bee colonies and their products, the mite strain type and its seasonal dynamics under local incident remain uncertain. Therefore, controlled experiment has been designed to unveil the basic questions with regards to the nature and the effects of the parasite under local conditions. Ten bee colonies were set up at Bako area which is 250 km west of Addis Ababa. Data collections were done for three years on monthly basis and collections of information were done on the parameters like the number of varroa mites on adults and brood bees and brood, pollen and nectar areas. Besides, morpho-size of the collected varroa mites were measured and compared with the morpho-sizes varroa mites collected from different localities. The study investigated negative correlation (P <-0. 0.513) between the number of mite and number of adult bees as well as brood, pollen and nectar areas. However, the number of mites on adult and brood bees as well as the mite's pessimistic effect varied between the colonies and the seasons. Based on morpho-size measurement, the mites were grouped into five mopho-clusters, but generally confirming all the strains belong to varroa destructor type. In spite of the presence of the parasitic varroa mite in all the bee colonies year round, all the colonies appeared to be healthy. The result from this study has enlightened local understanding on the seasonal dynamics, effects and species of varroa mite. However, further study that entails investigations on biological/ behavior of both the parasite and the host is suggested to avail better understanding on how local bees were not affected following the number of parasailing varroa mite.
A study was conducted in view of analyzing the responses of central highland honeybees (Apis mellifera bandasii) to Karl Jenter and Doolittle grafting queen-rearing methods at Holeta for two consecutive active seasons. The result of the study revealed that there was significant difference (p<0.001) between the techniques in percentage of accepted larvae and sealed queen cells. The acceptance rates for Karl Jenter and Doolittle grafting queen rearing methods were 78.19 and 50.81%, respectively while the rates were 42.75 and 25.56% for sealing, respectively. However, the result of the study showed that the rate of hatching (out of the total given larvae) into virgin queen stage in Karl Jenter and Doolittle grafting systems were about 23 and 23.8%, indicating no significant difference between the two techniques. From this study it is recommended that using Karl Jenter kit is an excellent option to overcome the problem of indentifying appropriate larvae for grafting under field conditions. However, there might be a difference in quality of the queens obtained from these two methods. Therefore, also further study recommended to evaluate the performance of queens reared using the two techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.