The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.
The Ghohroud granitoids (GG), containing mafic microgranular enclaves (MMEs) are located in the central part of the Urumieh‐Dokhtar Magmatic Arc (UDMA) in central Iran. They are associated with the subduction‐related magmatism in the Alpine‐Himalayan orogenic belt. The GG are comprised of a variety of intermediate and felsic rocks, including tonalite, granodiorite, granite, diorite porphyry and monzodiorite. The MMEs are gabbroic diorite and tonalite in composition and characterized by a fine‐grained hypidiomorphic microgranular texture with occasional chilled margins. They show rounded, sharp or irregular contact with the host granitoids. The occurrences of quartz, K‐feldspar and corroded plagioclase indicate that MMEs are the products of mixing between mantle and crust‐derived magmas. New ages of zircon U–Pb dating reveal that the GG in the Kashan area emplaced at ca. 19–17 Ma (Burdigalian). All the samples of MMEs and granitoid host rocks in this study are metaluminous and calc‐alkaline with I‐type affinities. They are enriched in light rare earth elements (LREEs) and show slight negative Eu anomalies (Eu/Eu* = 0.36–0.95). These features in a combination with the relative depletion in Nb, Ta, Ti and P, indicate the granitoids and MMEs are closely associated with subduction‐related magmas at an active continental margin. The host rocks yield relatively homogeneous isotopic compositions of initial 87Sr/86Sr ratios ranging from 0.706036 to 0.707055, εNd(t) values varying from −2.25 to 0.8, and the Nd model ages (TDM) vary in a limited range of 0.70–0.96 Ga. The MMEs show similar initial 87Sr/86Sr ratios (0.706420–0.707366), εNd(t) values (−1.32 to −0.27), TDM (0.68–1.09 Ga) and Pb isotopic compositions with host granitoids, which imply they attained isotopic equilibration during magma mingling and mixing. In combination with the petrographic, chemical and isotopic results, we suggest that the origin of MMEs and their host rocks were related to the interaction between crust‐derived melts and mantle‐derived mafic magmas. The magma‐mixing event possibly occurred during the transition from subduction to collision in the UDMA along with the closure of the Neotethyan ocean.
Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.