The electrical distribution system (EDS) has undergone major changes in the last decade due to the increasing integration of distributed generation (DG), particularly renewable energy DG. Since renewable energy resources have uncertain generation, energy storage systems (ESSs) in the EDS can reduce the impact of those uncertainties. Besides, electric vehicles (EVs) have been increasing in recent years leveraged by environmental concerns, bringing new challenges to the operation and planning of the EDS. In this context, new approaches for the distribution system expansion planning (DSEP) problem should consider the distributed energy resources (DG units, ESSs, and EVs) and address environmental impacts. This paper proposes a mixed-integer linear programming model for the DSEP problem considering DG units, ESSs, and EV charging stations, thus incorporating the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. In contrast to other approaches, the proposed model includes the simultaneous optimization of investments in substations, circuits, and distributed energy resources, including environmental aspects (CO2 emissions). The optimization method was developed in the modeling language AMPL and solved via CPLEX. Tests carried out with a 24-node system illustrate its effectiveness as a valuable tool that can assist EDS planners in the integration of distributed energy resources. INDEX TERMS Distribution system expansion planning, integrated planning of electrical distribution system and EV charging stations, long-term stochastic planning model, renewable distributed generation.
In the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.