Kappa opioid receptor (KOR) agonists produce analgesic and anti-pruritic effects, but their clinical application was limited by dysphoria and hallucinations. Nalfurafine, a clinically used KOR agonist, does not cause dysphoria or hallucinations at therapeutic doses in humans. We found that in CD-1 mice nalfurafine produced analgesic and anti-scratch effects dose-dependently, like the prototypic KOR agonist U50,488H. In contrast, unlike U50,488H, nalfurafine caused no aversion, anhedonia, or sedation or and a low level of motor incoordination at the effective analgesia and anti-scratch doses. Thus, we established a mouse model that recapitulated important aspects of the clinical observations. We then employed a phosphoproteomics approach to investigate mechanisms underlying differential KOR-mediated effects. A large-scale mass spectrometry (MS)-based analysis on brains revealed that nalfurafine perturbed phosphoproteomes differently from U50,488H in a brain-region specific manner after 30-min treatment. In particular, U50,488H and nalfurafine imparted phosphorylation changes to proteins found in different cellular components or signaling pathways in different brain regions. Notably, we observed that U50,488H, but not nalfurafine, activated the mammalian target of rapamycin (mTOR) pathway in the striatum and cortex. Inhibition of the mTOR pathway by rapamycin abolished U50,488H-induced aversion, without affecting analgesic, anti-scratch, and sedative effects and motor incoordination. The results indicate that the mTOR pathway is involved in KOR agonist-induced aversion. This is the first demonstration that phosphoproteomics can be applied to agonist-specific signaling of G protein-coupled receptors (GPCRs) in mouse brains to unravel pharmacologically important pathways. Furthermore, this is one of the first two reports that the mTOR pathway mediates aversion caused by KOR activation.
Hypothalamic hypocretin (orexin) peptides mediate arousal, attention, and reward processing. Fibers containing orexins project to brain structures that govern motivated behavior, including the ventral tegmental area (VTA). A number of psychiatric conditions, including attention deficit hyperactivity disorder (ADHD) and substance use disorders, are characterized by deficits in impulse control, however the relationship between orexin and impulsive behavior is incompletely characterized. The effects of systemic or centrally administered orexin receptor (OXR) antagonists on measures of impulsive-like behavior in rats were evaluated using the five-choice serial reaction time task (5-CSRTT) and delay discounting procedures. These paradigms were also used to test the capacity of OXR antagonists to attenuate acute cocaine-evoked impulsivity. Finally, immunohistochemistry and calcium imaging were used to assess potential cellular mechanisms by which OXR blockade may influence motor impulsivity. Suvorexant, a dual (OXR) orexin receptor antagonist, reduced cocaine-evoked premature responses in 5-CSRTT when administered systemically or directly into VTA. Neither suvorexant nor OXR- or OXR-selective compounds (SB334867 or TCS-OX2-29, respectively) altered delay discounting. Finally, suvorexant did not alter Fos-immunoreactivity within tyrosine hydroxylase-immunolabeled neurons of VTA, but did attenuate cocaine- and orexin-induced increases in calcium transient amplitude within neurons of VTA. Results from the present studies suggest potential therapeutic utility of OXR antagonists in reducing psychostimulant-induced motor impulsivity. These findings also support the view that orexin transmission is closely involved in executive function in normal and pathological conditions.
Orexins ('hypocretins') are peptides produced by neurons of the hypothalamus that project to structures implicated in reward and emotion processing. Converging evidence demonstrates functional roles of orexin signaling in arousal, sleep/wakefulness and motivated behaviors for natural and drug rewards. Suvorexant, a dual orexin receptor antagonist, recently received approval from the US Food and Drug Administration to treat insomnia. In Experiment 1, rats self-administered cocaine under a progressive-ratio schedule of reinforcement and the effects of suvorexant on motivation to self-administer cocaine were measured. In Experiment 2, the effects of suvorexant on cocaine reward were assessed by using a place conditioning paradigm, and 50-kHz ultrasonic vocalizations were also recorded to track changes in hedonic reactivity to cocaine. To rule out potentially confounding effects of suvorexant-induced somnolence, locomotor activity was also measured. In Experiment 3, the effects of suvorexant on cocaine-evoked elevations in ventral striatal dopamine were examined. Data reveal that suvorexant (i) reduced the number of cocaine infusions earned during progressive-ratio self-administration; (ii) attenuated initial positive hedonic reactivity to cocaine and prevented cocaine place preference; (iii) did not affect cocaine-induced hyperlocomotion and (iv) reduced cocaine-induced elevations in extracellular ventral striatal dopamine. The present study examined the therapeutic potential of suvorexant in rodent models of cocaine use disorder. These results contribute toward a growing literature supporting therapeutic roles of orexin receptor antagonists in treating substance use disorders.
Abuse of synthetic psychostimulants like synthetic cathinones has risen in recent years. 3,4-Methylenedioxypyrovalerone (MDPV) is one such synthetic cathinone that demonstrates a mechanism of action similar to cocaine. Compared to cocaine, MDPV is more potent at blocking dopamine and norepinephrine reuptake and is readily self-administered by rodents. The present study compared the rewarding and reinforcing properties of MDPV and cocaine using systemic injection dose-response and self-administration models. Fifty kilohertz ultrasonic vocalizations (USVs) were recorded as an index of positive affect throughout experiments. In Experiment 1, MDPV and cocaine dose-dependently elicited 50-kHz USVs upon systemic injection, but MDPV increased USVs at greater rates and with greater persistence relative to cocaine. In Experiment 2, latency to begin MDPV self-administration was shorter than latency to begin cocaine self-administration, and self-administered MDPV elicited greater and more persistent rates of 50-kHz USVs versus cocaine. MDPV-elicited 50-kHz USVs were sustained over the course of drug load-up whereas cocaine-elicited USVs waned following initial infusions. Notably, we observed a robust presence of context-elicited 50-kHz USVs from both MDPV and cocaine self-administering rats. Collectively, these data suggest that MDPV has powerfully rewarding and reinforcing effects relative to cocaine at one-tenth doses. Consistent with prior work, we additionally interpret these data in supporting that MDPV has significant abuse risk based on its potency and subjectively positive effects. Future studies will be needed to better refine therapeutic strategies targeted at reducing the rewarding effects of cathinone analogs in efforts to ultimately reduce abuse liability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.