This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.
Significance The activities of the fusion proteins that mediate virus–cell fusion are an absolute requirement for virus entry and infectivity of enveloped viruses such as HIV, influenza virus, measles virus, and respiratory syncytia virus, among others. Viral fusion proteins are translated initially in a metastable prefusion state and, upon triggering, undergo an extensive and irreversible refolding process. Membrane fusion is coupled to the energy released by the fusion proteins adopting a stable, low-energy postfusion state. Here we use oxidative footprinting of the parainfluenza virus 5 fusion protein to reveal new details of this critical event in the viral lifecycle. A greater understanding of the dynamic nature of these metastable proteins may reveal novel opportunities for the development of targeted therapeutics.
Post-assembly functionalization of supramolecular nanostructures has the potential to expand the range of their applications. We report here the use of the chemoselective native chemical ligation (NCL) reaction to functionalize self-assembled peptide amphiphile (PA) nanofibers. This strategy can be used to incorporate specific bioactivity on the nanofibers, and as a model, we demonstrate functionalization with the RGDS peptide following self-assembly. Incorporation of bioactivity is verified by the observation of characteristic changes in fibroblast morphology following NCL-mediated attachment of the signal to PA nanofibers. The NCL reaction does not alter the PA nanofiber morphology, and biotinylated RGDS peptide was found to be accessible on the nanofiber surface after ligation for binding with streptavidin-conjugated gold nanoparticles. In order to show that this strategy is not limited to short peptides, we utilized NCL to conjugate yellow fluorescent protein and/or cyan fluorescent protein to self-assembled PA nanofibers. Förster resonance energy transfer and fluorescence anisotropy measurements are consistent with the immobilization of the protein on the PA nanofibers. The change in electrophoretic mobility of the protein upon conjugation with PA molecules confirmed the formation of a covalent linkage. NCL-mediated attachment of bioactive peptides and proteins to self-assembled PA nanofibers allows the independent control of self-assembly and bioactivity while retaining the biodegradable peptide structure of the PA molecule and thus can be useful in tailoring design of biomaterials.
Spindle formation in mammalian cells requires precise spatial and temporal regulation of the kinesin-5, Eg5, which generates outward force to establish spindle bipolarity. Our results demonstrate that Eg5 is phosphorylated in cultured cells by Src family kinases (SFKs) at three sites in the motor head: Y125, Y211, and Y231. Mutation of these sites diminishes motor activity in vitro, and replacement of endogenous Eg5 with phosphomimetic Y211 in LLC-Pk1 cells results in monopolar spindles, consistent with loss of Eg5 activity. Cells treated with SFK inhibitors show defects in spindle formation, similar to those in cells expressing the non-phosphorylatable Y211 mutant, and distinct from inhibition of other mitotic kinases. We propose that this phosphoregulatory mechanism tunes Eg5 enzymatic activity for optimal spindle morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.