Imaging with GECIs has become a widely used method in physiology and neuroscience [1][2][3] . According to readout mode, the design of the sensors has followed two different pathways, leading to single-wavelength sensors and FRET-based ratiometric sensors [4][5][6][7][8] . Among the most popular single-wavelength sensors are the G-CaMPs 9-13 , R-CaMPs 14 and GECOs 15 . FRET sensors include yellow cameleon 3.60 (refs. 16,17), D3cpv 18 , yellow cameleon Nano 19 and TN-XXL 20 .Quantification by ratiometric FRET imaging is more accurate than single-channel measurements and may be more suitable for long-term functional imaging studies, as it is less influenced by changes in optical path length, excitation light intensity and indicator expression level and by tissue movement and growth during development. In addition, FRET indicators are substantially brighter than single-wavelength sensors at rest, allowing better identification of expressing cells and their subcellular structures. Another practical feature of FRET-based indicators is their ability to measure basal Ca 2+ levels within cells, for example, to distinguish between resting and continuously spiking neuronssomething that cannot easily be achieved with single-wavelength indicators 21 . Increased basal Ca 2+ levels within the brain are also observed at the onset of neurodegenerative processes, and ratiometric FRET calcium imaging has been used in these conditions to monitor disease progression 22,23 . Moreover, ratiometric indicators are advantageous for monitoring calcium in motile cells.Both calmodulin and troponin C (TnC), the calcium binding proteins within the various GECIs, consist of two globular domains connected by a central linker 24,25 . Each domain possesses two calcium-binding EF hand motifs. Thus, currently available GECIs are highly nonlinear sensors binding up to four calcium ions per sensor. Identification of a smaller calciumbinding domain with fewer binding sites could help to reduce buffering during long-term chronic GECI expression 26 , make the sensor smaller and further minimize the risk of cytotoxicity. It may also help to simplify response properties and facilitate the biophysical modeling of sensor behavior.Here we report several improvements of FRET-based calcium sensors for in vivo imaging. First, we identified a minimal calcium binding motif based on the C-terminal domain of TnC with only two or one remaining calcium binding sites per sensor molecule, thus reducing the overall calcium buffering of the sensors. Second, by sampling TnCs from various species we identified a new TnC variant from the toadfish Opsanus tau, which offered the possibility of generating minimal domains with high-affinity calcium binding. Third, we used a large-scale, two-step functional screen to optimize the FRET changes in the sensor by linker diversification. This approach allowed us to identify Twitch sensors with a superior FRET change and may become useful for optimizing other types of FRET sensors. Finally, we improved brightness and photostability o...
Abstract. We have been investigating a set of genes, collectively called mups, that are essential to striated body wall mu...__scle cell _positioning in Caenorhabditis elegans. Here we report our detailed characterization of the mup-2 locus, which encodes troponin T (TnT). Mutants for a heat-sensitive allele, called mup-2(e2346ts), and for a putative null, called mup-2(upl), are defective for embryonic body wall muscle cell contraction, sarcomere organization, and cell positioning. Characterizations of the heat-sensitive allele demonstrate that mutants are also defective for regulated muscle contraction in larval and adult body wall muscle, defective for function of the nonstriated oviduct myoepithelial sheath, and defective for epidermal morphogenesis. We cloned the mup-2 locus and its corresponding cDNA. The cDNA encodes a predicted 405-amino acid protein homologous to vertebrate and invertebrate TnT and includes an invertebrate-specific COOH-terminal tail.The mup-2 mutations lie within these cDNA sequences: mup-2(upl) is a termination codon near NH2 terminus (Glu94) and mup-2(e2346ts) is a termination codon in the COOH-terminal invertebrate-specific tail (Trp342). TnT is a muscle contractile protein that, in association with the thin filament proteins tropomyosin, troponin I and troponin C, regulates myosin-actin interaction in response to a rise in intraceUular Ca 2÷. Our findings demonstrate multiple essential functions for TnT and provide a basis to investigate the in vivo functions and protein interactions of TnT in striated and nonstriated muscles. STUDIES of many organisms, including vertebrates, indicate that the stable attachment of muscle to the skeleton requires muscle sarcomere assembly, muscle contraction and extracellular matrix formation. Caenorhabditis elegans offers unique advantages for investigations of the cellular mechanisms influencing the establishment and maintenance of muscle attachment. C. elegans has a simple cellular anatomy of only 959 adult somatic ceils and contains a small number of muscle types (for review see Waterston, 1988). The cell divisions and migrations giving rise to these muscle types have been fully described at the cellular level (Sulston et al., 1983). Since the spatial relationships of individual muscle cells are easily visualized and are invariant, the attachments of muscle cells can be precisely determined in wild-type and mutant worms. Given these attributes, it is possible to study specific gene mutations to
The Ca(2+)-dependence of structural changes in troponin-C (TnC) has been detected by monitoring the fluorescence from TnC labeled at Methionine-25, in the NH2-terminal domain, with danzylaziridine (TnC-DANZ) and then exchanged for endogenous TnC in glycerinated single fibers. The fluorescence-pCa relation obtained from fibers stretched to a sarcomere length greater than 4.0 microns evidenced two transitions: a small one, attributable to the binding of Ca2+ to the high affinity, Ca(2+)-Mg(2+)-binding sites of TnC; and a large one, attributable to the binding of Ca2+ to the low affinity, Ca(2+)-specific binding sites of TnC. In the fluorescence-pCa relation determined with fibers set to a sarcomere length of 2.4 microns, hence obtained in the presence of cycling cross-bridges, the large transition had the same Ca(2+)-dependence as did the development of tension. These results indicate that the NH2-terminal globular domain of TnC is modified by the binding of Ca2+ to sites located in both globular domains and that the structural changes in TnC resulting from the binding of Ca2+ to the low-affinity sites, but not to the high-affinity sites, are directly associated with the triggering of contraction.
Caenorhabditis elegans strains mutant for the unc-27 gene show abnormal locomotion and muscle structure. Experiments revealed that unc-27 is one of four C. elegans troponin I genes and that three mutant alleles truncate the protein: recessive and presumed null allele e155 terminates after nine codons; semidominant su142sd eliminates the inhibitory and C-terminal regions; and semidominant su195sd abbreviates the extreme C-terminus. Assays of in vivo muscular performance at high and low loads indicated that su142sd is most deleterious, with e155 least and su195sd intermediate. Microscopy revealed in mutant muscle a prevalent disorder of dense body positioning and a less well defined sarcomeric structure, with small islands of thin filaments interspersed within the overlap region of A bands and even within the H zone. The mutants' rigid paralysis and sarcomeric disarray are consistent with unregulated contraction of the sarcomeres, in which small portions of each myofibril shorten irregularly and independently of one another, thereby distorting the disposition of filaments. The exacerbated deficits of su142sd worms are compatible with involvement in vivo of the N-terminal portion of troponin I in enhancing force production, and the severe impairment associated with su195sd highlights importance of the extreme C-terminus in the protein's inhibitory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.