In enteric bacteria, the transcription factor s E maintains membrane homeostasis by inducing synthesis of proteins involved in membrane repair and two small regulatory RNAs (sRNAs) that down-regulate synthesis of abundant membrane porins. Here, we describe the discovery of a third s E -dependent sRNA, MicL (mRNA-interfering complementary RNA regulator of Lpp), transcribed from a promoter located within the coding sequence of the cutC gene. MicL is synthesized as a 308-nucleotide (nt) primary transcript that is processed to an 80-nt form. Both forms possess features typical of Hfq-binding sRNAs but surprisingly target only a single mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein of the cell. We show that the copper sensitivity phenotype previously ascribed to inactivation of the cutC gene is actually derived from the loss of MicL and elevated Lpp levels. This observation raises the possibility that other phenotypes currently attributed to protein defects are due to deficiencies in unappreciated regulatory RNAs. We also report that s E activity is sensitive to Lpp abundance and that MicL and Lpp comprise a new s E regulatory loop that opposes membrane stress. Together MicA, RybB, and MicL allow s E to repress the synthesis of all abundant outer membrane proteins in response to stress.
The RNA chaperone protein Hfq is critical to the function of small, base pairing RNAs in many bacteria. In the past few years, structures and modeling of wild type Hfq and assays of various mutants have documented that the homohexameric Hfq ring can contact RNA at four sites (proximal face, distal face, rim and C-terminal tail) and that different RNAs bind to these sites in various configurations. These studies together with novel in vitro and in vivo experimental approaches are beginning to give mechanistic insights into how Hfq acts to promote small RNA-mRNA pairing and indicate that flexibility is integral to the Hfq role in RNA matchmaking.
SUMMARY
The highly-structured, cis-encoded RNA elements known as riboswitches modify gene expression upon binding a wide range of molecules. The yybP-ykoY motif was one of the most broadly distributed and numerous bacterial riboswitch whose cognate ligand was unknown. Using a combination of in vivo reporter and in vitro expression assays, equilibrium dialysis and northern analysis, we show that the yybP-ykoY motif responds directly to manganese ions in both Escherichia coli and Bacillus subtilis. The identification of the yybP-ykoY motif as a manganese ion sensor suggests the genes that are preceded by this motif, and encode a diverse set of poorly characterized membrane proteins, have roles in metal homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.