The Renyi entropies and entanglement entropy of 1+1 CFTs with gravity duals can be computed by explicit construction of the bulk spacetimes dual to branched covers of the boundary geometry. At the classical level in the bulk this has recently been shown to reproduce the conjectured Ryu-Takayanagi formula for the holographic entanglement entropy. We study the one-loop bulk corrections to this formula. The functional determinants in the bulk geometries are given by a sum over certain words of generators of the Schottky group of the branched cover. For the case of two disjoint intervals on a line we obtain analytic answers for the one-loop entanglement entropy in an expansion in small cross-ratio. These reproduce and go beyond anticipated universal terms that are not visible classically in the bulk. We also consider the case of a single interval on a circle at finite temperature. At high temperatures we show that the one-loop contributions introduce expected finite size corrections to the entanglement entropy that are not present classically. At low temperatures, the one-loop corrections capture the mixed nature of the density matrix, also not visible classically below the Hawking-Page temperature.Comment: 1+41 pages. Three figures. v2 References adde
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.