Local translation regulates the formation of appropriate connectivity in the developing nervous system. However, the localization and molecular mechanisms underlying this translation within growth cones is not well understood. Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that interacts with β-actin mRNA. We recently showed that RACK1 localizes to and regulates the formation of point contacts, which are adhesion sites that control growth cone motility. This suggests that local translation occurs at these adhesion sites that are important for axonal pathfinding, but this has not been investigated. Here, we show that RACK1 is required for BDNF-induced local translation of β-actin mRNA in growth cones. Furthermore, the ribosomal binding function of RACK1 regulates point contact formation, and axon growth and guidance. We also find that local translation of β-actin occurs at point contacts.Taken together, we show that adhesions are a targeted site of local translation within growth cones, and RACK1 is critical to the formation of point contacts and appropriate neural development.These data provide further insight into how and where local translation is regulated, and thereby leads to appropriate connectivity formation in the developing nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.