African American men in the United States have higher mortality due to prostate cancer (PCa) compared to other races. One reason for this disparity is the lack of in-depth understanding of the PCa biology in African Americans. For example, hypoxia in prostate tumor microenvironment is associated with adverse prognosis; still, no hypoxia-related studies have been reported in African Americans. Here, we compared African-American and Caucasian PCa cells for exosome secretion under normoxic (21% O2) and hypoxic (1% O2) conditions. All cell lines showed higher exosome secretion under hypoxia but it was clearly more prominent in African-American PCa cells. Further, under hypoxia, Rab5 (a biomarker for early endosome) was clustered in perinuclear region; and CD63 (a biomarker for exosomes and multivesicular endosomes) showed greater co-localization with actin cytoskeleton especially in African American PCa cells. Importantly, exosome biogenesis inhibitors GW4869 (10–20 µM) or DMA (10–20 µg/ml) significantly decreased cell viability and clonogenicity in PCa cells. Interestingly, we also observed higher level of lactic acid loaded in exosomes secreted under hypoxia. Overall, under chronic hypoxia, PCa cells secrete more exosomes as a survival mechanism to remove metabolic waste.
Prostate cancer (PCa) deaths are typically the result of metastatic castrationresistant PCa (mCRPC). Recently, enzalutamide (Enz), an oral androgen receptor inhibitor, was approved for treating patients with mCRPC. Invariably, all PCa patients eventually develop resistance against Enz. Therefore, novel strategies aimed at overcoming Enz resistance are needed to improve the survival of PCa patients. The role of exosomes in drug resistance has not been fully elucidated in PCa. Therefore, we set out to better understand the exosome's role in the mechanism underlying Enzresistant PCa. Results showed that Enz-resistant PCa cells (C4-2B, CWR-R1, and LNCaP) secreted significantly higher amounts of exosomes (2-4 folds) compared to Enz-sensitive counterparts. Inhibition of exosome biogenesis in resistant cells by GW4869 and dimethyl amiloride strongly decreased their cell viability. Mechanistic studies revealed upregulation of syntaxin 6 as well as its increased colocalization with CD63 in Enz-resistant PCa cells compared to Enz-sensitive cells. Syntaxin 6 knockdown by specific small interfering RNAs in Enz-resistant PCa cells (C4-2B and CWR-R1) resulted in reduced cell number and increased cell death in the presence of Enz. Furthermore, syntaxin 6 knockdown significantly reduced the exosome secretion in both Enz-resistant C4-2B and CWR-R1 cells. The Cancer Genome Atlas analysis showed increased syntaxin 6 expressions associated with higher Gleason score and decreased progression-free survival in PCa patients. Importantly, IHC analysis showed higher syntaxin 6 expression in cancer tissues from Enz-treated patients compared to Enz naïve patients. Overall, syntaxin 6 plays an important role in the secretion of exosomes and increased survival of Enz-resistant PCa cells. K E Y W O R D S drug resistance, enzalutamide, exosomes, prostate cancer, syntaxin 6
Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03-0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, N(w)-nitro-L-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.
Erectile dysfunction (ED) is a common, male sexual disorder that has a negative impact on the quality of life of men and their sexual partners. The prevalence of ED in diabetic men is ≥ 50%. Animal models provide a valuable perspective in the investigation of ED. Most basic science studies have utilized the rodent model of type 1 diabetes. However, an animal model for type 2 diabetes-associated ED requires verification. The streptozotocin (STZ) induced type 1 diabetic model has contributed to significant advancement in the study of ED. A Medline search using the keywords "diabetic animals and ED" was performed, and available peer-reviewed English articles between 2007-2013 were evaluated. The proposed mechanisms for developing ED in diabetics include: hyperglycemia, impaired nitric oxide (NO) synthesis, cyclic guanosine monophosphate (cGMP) pathway dysfunction, increased levels of reactive free-radicals, up-regulation of the RhoA/Rho-kinase pathway, and neuropathic damage. The current treatment regimen of diabetes-induced ED is multimodal. Modification of comorbidities and, specifically, rectifying the underlying hyperglycemia is vital to prevent or halt progression of the disease. Further research on the basic mechanisms of ED and additional studies using better animal models of ED associated with type 1 and 2 diabetes are needed. Preclinical studies using the diabetic animal model will likely provide further insight for intervention and prevention strategies for diabetic ED treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.