Zircon provides essential information on the age and oxidation state of magmatic systems and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay intrusion-related gold system (IRGS) as a type example of Neoarchean syenite-associated mineralization (Abitibi greenstone belt), we demonstrate that zircon from altered quartz-monzonite rocks can also be used to infer the age of a magmatic-hydrothermal event. Here, zircon chemistry is used to identify the following sequence of events at the Douay exploration project: (1) the crystallization of zircon at ~2690 Ma in evolved residual melts with distinct U-contents (quartz-monzonite magma); (2) the extensive radiation damage for the U-rich grains over a period of ~10–15 My; and (3) the alteration of zircon grains at ~2676 Ma by interaction with magmatic-hydrothermal mineralizing fluids derived from syenite and carbonatite intrusive phases. This study also distinguishes extensively altered zircon grains from pristine to least-altered zircon formed in distinct magmatic environments using a Th/U vs. U discrimination diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.