Introduction Spatial navigation deficits are observed in Alzheimer's disease cross‐sectionally, but prediction of longitudinal clinical decline has been less examined. Methods Cognitive mapping (CM) was assessed in 95 participants and route learning (RL) was assessed in 65 participants at baseline. Clinical progression over an average of 4 to 5 years was assessed using the clinical dementia rating (CDR) scale. Relative predictive ability was compared to episodic memory, hippocampus, and cerebrospinal fluid biomarkers (phosphorylated tau/amyloid β 42 (ptau181/Aβ42) ratio). Results CM and RL were predictors of clinical progression (P’s < 0.032). All measures, except RL‐Learning remained predictors with episodic memory in models (P’s < 0.048). Only RL‐Retrieval remained a predictor when ptau181/Aβ42 was included (P < 0.001). CM interacted with hippocampus and ptau181/Aβ42 in prediction (P’s < 0.013). CM, RL, and episodic memory evidenced strong diagnostic accuracy (area under the curve (AUC) = 0.894, 0.794, and 0.735, respectively); CM tended to perform better than episodic memory (P = 0.056). Discussion Baseline spatial navigation performance may be appropriate for assessing risk of clinical progression.
Background People with Parkinson's disease (PD) can develop multidomain cognitive impairments; however, it is unclear whether different pathologies underlie domain‐specific cognitive dysfunction. Objectives We investigated the contribution of vascular copathology severity and location, as measured by MRI white matter hyperintensities (WMHs), to domain‐specific cognitive impairment in PD. Methods We studied 85 PD (66.6 ± 9.2 years) and 18 control (65.9 ± 6.6) participants. Using the Fazekas scale for rating the severity of WMH, we subdivided PD into 14 PD–WMH+ and 71 PD–WMH–. Participants underwent global, executive, visuospatial, episodic memory, and language testing. We performed nonparametric permutation testing to create WMH probability maps based on PD‐WMH group and cognitive test performance. Results The PD–WMH+ group showed worse global and executive cognitive performance than the PD–WMH– group. On individual tests, the PD–WMH+ group showed worse Montreal Cognitive Assessment (MoCA), Stroop, Symbol Digit Modalities Test (SDMT), and Digit Span scores. WMH probability maps showed that in the PD–WMH+ group, worse Stroop was associated with lesions centered around the corticospinal tract (CST), forceps major, inferior‐fronto‐occipital fasciculus, and superior longitudinal fasciculus; worse SDMT with lesions around the CST, forceps major, and posterior corona radiata; worse Digit Span with lesions around the posterior corona radiata; and worse MoCA with lesions around the CST. Conclusions We found that WMH severity was associated with PD executive dysfunction, including worse attention, working memory, and processing speed. Disruption of key white matter tracts in proximity to vascular lesions could contribute to these specific cognitive impairments. Early treatment of vascular disease might mitigate some executive dysfunction in a subset of patients with PD.
To identify clinically implementable biomarkers of cognitive impairment in Parkinson's Disease (PD) derived from resting state-functional MRI (rs-fMRI) and CSF protein analysis. Methods: In this single-center longitudinal cohort study, we analyzed rs-fMRI and CSF biomarkers from 50 PD patients (23 cognitively normal, 18 mild cognitive impairment, 9 dementia) and 19 controls, who completed comprehensive neuropsychological testing. A subgroup of participants returned for follow-up cognitive assessments three years later. From rs-fMRI, we studied the connectivity within two distinct Default Mode Network subsystems: left-to-right hippocampus (LHC-RHC) and medial prefrontal cortex-to-posterior cingulate cortex (mPFC-PCC). We used regression analyses to determine whether imaging (LHC-RHC, mPFC-PCC), clinical (CSF Aβ-42:40, disease duration), and demographic (age, sex, education) variables were associated with global and domain-specific cognitive impairments. Results: LHC-RHC (F 3,67 = 3.41,p=0.023) and CSF Aβ-42:40 (χ 2 (3) = 8.77,p = 0.033) were reduced across more cognitively impaired PD groups. Notably, LHC-RHC connectivity was significantly associated with all global and domain-specific cognitive impairments (attention/executive, episodic memory, visuospatial, and language) at the baseline visit. In an exploratory longitudinal analysis, mPFC-PCC was associated with future global and episodic memory impairment. Conclusion:We used biomarker techniques that are readily available in clinical and research facilities to shed light on the pathophysiologic basis of cognitive impairment in PD. Our findings suggest that there is a functionally distinct role of the hippocampal subsystem within the DMN resting state network, and that intrinsic connectivity between the hippocampi is critically related to a broad range of cognitive functions in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.