Endometriosis is a common gynecological disorder seen in women and is characterized by chronic pelvic pain and infertility. This disorder is becoming more prevalent with increased morbidity. The etiology of endometriosis remains to be fully elucidated, which will lead to improved therapeutic options. In this review, we will evaluate the biochemical mechanisms leading to oxidative stress and their implication in the pathophysiology of endometriosis, as well as potential treatments that target these processes. A comprehensive exploration of previous research revealed that endometriosis is associated with elevated reactive oxygen species and oxidation products, decreased antioxidants and detoxification enzymes, and dysregulated iron metabolism. High levels of oxidative stress contributed to inflammation, extracellular matrix degradation, angiogenesis, and cell proliferation, which may explain its role in endometriosis. Endometriosis-associated pain was attributed to neurogenic inflammation and a feed-forward mechanism involving macrophages, pro-inflammatory cytokines, and pain-inducing prostaglandins. N-acetylcysteine, curcumin, melatonin, and combined vitamin C and E supplementation displayed promising results for the treatment of endometriosis, but further research is needed for their use in this population.
Ovarian cancer is the 4th largest cause of cancer death in women. Approximately 10–15% of women of childbearing age suffer from endometriosis. Endometriosis is defined by the growth and presence of endometrial tissue (lesions) outside of the uterus. The women with endometriosis also have an increased presence of peritoneal fluid (PF) that comprises of inflammatory cells, growth factors, cytokines/chemokines, etc. Epidemiological studies have shown that >3% of women with endometriosis develop ovarian cancer (low-grade serous or endometrioid types). Our hypothesis is that the PF from women with endometriosis induces transformative changes in the ovarian cells, leading to ovarian cancer development. PF from women with and without endometriosis was collected after IRB approval and patient consent. IOSE (human normal ovarian epithelial cells) and TOV-21G cells (human ovarian clear cell carcinoma cell line) were treated with various volumes of PF (no endometriosis or endometriosis) for 48 or 96 h and proliferation measured. Expression levels of epigenetic regulators and FoxP3, an inflammatory tumor suppressor, were determined. A Human Cancer Inflammation and Immunity Crosstalk RT2 Profiler PCR array was used to measure changes in cancer related genes in treated cells. Results showed increased growth of TOV-21G cells treated with PF from women with endometriosis versus without endometriosis and compared to IOSE cells. Endo PF treatment induced EZH2, H3K27me3, and FoxP3. The RT2 PCR array of TOV-21G cells treated with endo PF showed upregulation of various inflammatory genes (TLRs, Myd88, etc.). These studies indicate that PF from women with endometriosis can both proliferate and transform ovarian cells and hence this microenvironment plays a major mechanistic role in the progression of endometriosis to ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.