HIGHLIGHTSGenetic deficiency of EDEM3 leads to lower blood triglyceride (TG) level EDEM3 deficiency increases VLDL uptake by up-regulating LRP1 receptor expression Blood TG changes due to EDEM3 mutation correlate with the TG profile of EDEM3 KO cells
Population genetic studies highlight a missense variant (G398S) of A1CF that is strongly associated with higher levels of blood triglycerides (TGs) and total cholesterol (TC). Functional analyses suggest that the mutation accelerates the secretion of very low-density lipoprotein (VLDL) from the liver by an unknown mechanism. Here, we used multiomics approaches to interrogate the functional difference between the WT and mutant A1CF. Using metabolomics analyses, we captured the cellular lipid metabolite changes induced by transient expression of the proteins, confirming that the mutant A1CF is able to relieve the TG accumulation induced by WT A1CF. Using a proteomics approach, we obtained the interactomic data of WT and mutant A1CF. Networking analyses show that WT A1CF interacts with three functional protein groups, RNA/mRNA processing, cytosolic translation, and, surprisingly, mitochondrial translation. The mutation diminishes these interactions, especially with the group of mitochondrial translation. Differential analyses show that the WT A1CF-interacting proteins most significantly different from the mutant are those for mitochondrial translation, whereas the most significant interacting proteins with the mutant are those for cytoskeleton and vesicle-mediated transport. RNA-seq analyses validate that the mutant, but not the WT, A1CF increases the expression of the genes responsible for cellular transport processes. On the contrary, WT A1CF affected the expression of mitochondrial matrix proteins and increased cell oxygen consumption. Thus, our studies confirm the previous hypothesis that A1CF plays broader roles in regulating gene expression. The interactions of the mutant A1CF with the vesicle-mediated transport machinery provide mechanistic insight in understanding the increased VLDL secretion in the A1CF mutation carriers.
Human genetics studies have uncovered genetic variants that can be used to guide biological research and prioritize molecular targets for therapeutic intervention for complex diseases and metabolic conditions. We have identified a missense variant (P746S) in EDEM3 associated with lower blood triglyceride (TG) levels in >300,000 individuals. Functional analyses in cell and mouse models show that EDEM3 deficiency strongly increased the uptake of very low-density lipoprotein and thereby reduced the plasma TG level, as a result of up-regulated expression of LRP1 receptor. We demonstrate that EDEM3 deletion up-regulated the pathways for RNA and ER protein processing and transport, and consequently increased the cell surface mannose-containing glycoproteins, including LRP1. Metabolomics analyses reveal a cellular TG accumulation under EDEM3 deficiency, a profile consistent with individuals with carrying EDEM3 P746S. Our study identifies EDEM3 as a regulator of blood TG, and targeted inhibition of EDEM3 may provide a complementary approach for lowering elevated blood TG concentrations.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.