Development of an anti-SARS-CoV-2 therapeutic is hindered by the lack of physiologically relevant model systems that can recapitulate host-viral interactions in human cell types, specifically the epithelium of the lung. Here, we compare induced pluripotent stem cell (iPSC)-derived alveolar and airway epithelial cells to primary lung epithelial cell controls, focusing on expression levels of genes relevant for COVID-19 disease modeling. iPSC-derived alveolar epithelial type II-like cells (iAT2s) and iPSC-derived airway epithelial lineages express key transcripts associated with lung identity in the majority of cells produced in culture. They express ACE2 and TMPRSS2, transcripts encoding essential host factors required for SARS-CoV-2 infection, in a minor subset of each cell sub-lineage, similar to frequencies observed in primary cells. In order to prepare human culture systems that are amenable to modeling viral infection of both the proximal and distal lung epithelium, we adapt iPSC-derived alveolar and airway epithelial cells to two-dimensional air-liquid interface cultures. These engineered human lung cell systems represent sharable, physiologically relevant platforms for SARS-CoV-2 infection modeling and may therefore expedite the development of an effective pharmacologic intervention for COVID-19.
The complex composition of venom, a proteinaceous secretion used by
diverse animal groups for predation or defense, is typically viewed as being
driven by gene duplication in conjunction with positive selection, leading to
large families of diversified toxins with selective venom gland expression. Yet,
the production of alternative transcripts at venom genes is often overlooked as
another potentially important process that could contribute proteins to venom,
and requires comprehensive datasets integrating genome and transcriptome
sequences together with proteomic characterization of venom to be fully
documented. In the common house spider,
Parasteatoda
tepidariorum
, we used RNA sequencing of four tissue types in
conjunction with the sequenced genome to provide a comprehensive transcriptome
annotation. We also used mass spectrometry to identify a minimum of 99 distinct
proteins in
P tepidariorum
venom, including at least 33
latrotoxins, pore-forming neurotoxins shared with the confamilial black widow.
We found that venom proteins are much more likely to come from multiple
transcript genes, whose transcripts produced distinct protein sequences. The
presence of multiple distinct proteins in venom from transcripts at individual
genes was confirmed for eight loci by mass spectrometry, and is possible at 21
others. Alternative transcripts from the same gene, whether encoding or not
encoding a protein found in venom, showed a range of expression patterns, but
were not necessarily restricted to the venom gland. However, approximately half
of venom protein encoding transcripts were found among the 1,318 transcripts
with strongly venom gland biased expression. Our findings revealed an important
role for alternative transcription in generating venom protein complexity and
expanded the traditional model of venom evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.