Use of light emitting diode (LED) technology is beginning to replace traditional lighting in greenhouses. This research focused on the effects of LED lighting and gibberellic acid supplementation on growth and flowering of Dahlia spp. ‘Karma Serena’, Liatris spicata ‘Kobold’, and Lilium asiatic ‘Yellow Cocotte’. Light treatments, used to extend photoperiod, included LED flowering lamps and halogen lamps that emitted a combination of red + far-red + white, red + white, and broad spectrum from late fall to early spring. Gibberellic acid treatments ranged from 40 to 340 mg L−1 for Asiatic lily ‘Yellow Cocotte’, 50 to 250 for gayfeather ‘Kobold’, and 50 to 150 for dahlia ‘Karma Serena’. Results varied within species in response to light and gibberellic acid. A significant interaction of light with gibberellic acid influenced mean flower number and flowering percentage for dahlia ‘Karma Serena’, while flowering percentage and flower diameter were influenced for Asiatic lily ‘Yellow Cocotte’. Effect of light was most significant on growth and flowering measurements, especially for gayfeather ‘Kobold’ and dahlia ‘Karma Serena’. For gayfeather ‘Kobold’, flowering occurred two weeks earlier under sole LED lighting than under other light treatments and no supplemental light. Although flowering occurred the earliest for dahlia ‘Karma Serena’ under no supplemental light, plants under light treatments had greater height, width, and shoot weight. Significant effects of gibberellic acid on growth and flowering measurements for dahlia ‘Karma Serena’ and Asiatic lily ‘Yellow Cocotte’ were observed for height, width, and flower number.
The role of silica as a needed supplement in soilless media is gaining interest. This research studied the effects of diatomaceous earth as a supplement on growth and flower characteristics, physiology, and nutrient uptake in dahlia (Dahlia Cav. × hybrida ‘Dahlinova Montana’), black-eyed Susan (Rudbeckia hirta L. ‘Denver Daisy’), and daisy (Gerbera jamesonii L. ‘Festival Light Eye White Shades’). Plants were either well-watered at 10 centibars or water-stressed at 20 centibars. Silicon treatments included top-dressed at 20, 40, 60, and 80 g, or incorporated at 50, 100, 150, and 200 g, in Metro-Mix 360 media without silica plus a control and one treatment of new Metro-Mix 360 with silica already incorporated. Significant effects were seen from diatomaceous earth supplementation, irrigation, and interaction in all plants; growth and flower characteristics, leaf nutrient content, and tolerance to stress were improved by application of diatomaceous earth. An increase in leaf N, P, K, Mg, and Ca was observed for dahlia ‘Dahlinova Montana’ and black-eyed Susan ‘Denver Daisy’. Transpiration was maintained in all three species due to silica supplementation under water-stress. Metro-Mix with silica was similar to the Metro-mix without silica and equivalent to most treatments with supplemental silica for all three species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.