Staphylococcus aureus is a facultative anaerobic Gram-positive coccus. About 30% of the human population carries this commensal microorganism on their skin without any clinical manifestations. 1 Cutaneous microbiome studies have also shown that S. aureus colonizes regions of the skin with higher humidity and temperature, such as the groyne, axillary vault and toe web. 2 However, when the skin barrier is compromised, S. aureus can colonize the wound regardless of location and become pathogenic. Staphylococcus aureus infections can cause a range of illnesses from minor skin infections, such as pimples, impetigo and abscesses, to persistent chronic wounds to life-threatening diseases, such as pneumonia, endocarditis and sepsis. 1,3,4 Infection often challenges the host's immune system, and
Background: Poorly healing wounds are one of the major complications in patients suffering from recessive dystrophic epidermolysis bullosa (RDEB). At present, there are no effective means to analyze changes in cellular and molecular networks occurring during RDEB wound progression to predict wound outcome and design betted wound management approaches. Objectives: To better define mechanisms influencing RDEB wound progression by evaluating changes in molecular and cellular networks. Methods: We developed a non-invasive approach for sampling and analysis of wound-associated constituents using wound-covering bandages. Cellular and molecular components from seventy-six samples collected from early, established and chronic RDEB wounds were evaluated by FACS-based immuno-phenotyping and ELISA. Results: Our cross-sectional analysis determined that progression of RDEB wounds to chronic state is associated with the accumulation (up to 90 %) of CD16 + CD66b + mature neutrophils, loss of CD11b + CD68 + macrophages, and a significant increase (up to 50 %) in a number of CD11c + CD80 + CD86 + activated professional antigen presenting cells (APC). It was also marked by changes in activated T cells populations including a reduction of CD45RO + peripheral memory T cells from 80 % to 30 % and an increase (up to 70 %) in CD45RA + effector T cells. Significantly higher levels of MMP9, VEGF-A and cathepsin G were also associated with advancing of wounds to poorly healing state. Conclusions: Our data demonstrated that wound-covering bandages are useful for a non-invasive sampling and analysis of wound-associated constituents and that transition to poorly healing wounds in RDEB patients as associated with distinct changes in leukocytic infiltrates, matrix-remodeling enzymes and pro-angiogenic factors at wound sites.
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Systemic lupus erythematosus (SLE) is an autoimmune disease that disproportionately affects women of reproductive age and increases their risk for developing hypertension, vascular, and renal disease. Relaxin has potential beneficial therapeutic effects in cardiovascular disease through direct actions on the vasculature. The potential therapeutic benefit of relaxin on SLE-associated cardiovascular and renal risk factors like hypertension has not previously been tested. We hypothesized that relaxin would attenuate hypertension, renal injury, and vascular dysfunction in an established female mouse model of SLE (NZBWF1 mice). Serelaxin (human recombinant relaxin-2, 0.5 mg·kg−1·day−1) or vehicle was administered via osmotic mini-pump for 4 wk in female control (NZW) or SLE mice between 28 and 31 wk of age. Serelaxin treatment increased uterine weights in both groups, suggesting that the Serelaxin was bioactive. Mean arterial pressure, measured by carotid artery catheter, was significantly increased in vehicle-treated SLE mice compared with vehicle-treated controls, but was not changed by Serelaxin treatment. Albumin excretion rate, measured by ELISA, was similar between vehicle- and Serelaxin-treated SLE mice and between vehicle- and Serelaxin-treated control mice. Wire myography was performed using isolated carotid arteries to assess endothelial-independent and -dependent vasodilation, and data confirm that SLE mice have impaired endothelium-independent and -dependent relaxation compared with control mice. Serelaxin treatment did not affect endothelium-independent vasodilation, but exacerbated the endothelium-dependent dysfunction. These data suggest that, contrary to our hypothesis, Serelaxin infusion does not attenuate hypertension, renal injury, or vascular dysfunction in SLE, but worsens underlying vascular endothelial dysfunction in this experimental model of SLE. These data do not support the use of human recombinant relaxin-2 as an antihypertensive in the SLE patient population. NEW & NOTEWORTHY Relaxin is a peptide hormone commonly known for its role in pregnancy and for its use in recent clinical trials for the treatment of heart failure. Evidence suggests that relaxin has immunomodulatory effects; however, the potential therapeutic impact of relaxin in chronic immune mediated disease is unclear. This study tests whether recombinant human relaxin (Serelaxin) attenuates the progression of autoimmunity, and the associated cardiovascular consequences, in an experimental model of systemic lupus erythematosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.