The sourmash software package uses MinHash-based sketching to create “signatures”, compressed representations of DNA, RNA, and protein sequences, that can be stored, searched, explored, and taxonomically annotated. sourmash signatures can be used to estimate sequence similarity between very large data sets quickly and in low memory, and can be used to search large databases of genomes for matches to query genomes and metagenomes. sourmash is implemented in C++, Rust, and Python, and is freely available under the BSD license at http://github.com/dib-lab/sourmash.
The identification of reference genomes and taxonomic labels from metagenome data underlies many microbiome studies. Here we describe two algorithms for compositional analysis of metagenome sequencing data. We first investigate the FracMinHash sketching technique, a derivative of modulo hash that supports Jaccard containment estimation between sets of different sizes. We implement FracMinHash in the sourmash software, evaluate its accuracy, and demonstrate large-scale containment searches of metagenomes using 700,000 microbial reference genomes. We next frame shotgun metagenome compositional analysis as the problem of finding a minimum collection of reference genomes that "cover" the known k-mers in a metagenome, a minimum set cover problem. We implement a greedy approximate solution using FracMinHash sketches, and evaluate its accuracy for taxonomic assignment using a CAMI community benchmark. Finally, we show that the minimum metagenome cover can be used to guide the selection of reference genomes for read mapping. sourmash is available as open source software under the BSD 3-Clause license at github.com/dib-lab/sourmash/.
Genomes computationally inferred from large metagenomic data sets are often incomplete and may be missing functionally important content and strain variation. We introduce an information retrieval system for large metagenomic data sets that exploits the sparsity of DNA assembly graphs to efficiently extract subgraphs surrounding an inferred genome. We apply this system to recover missing content from genome bins and show that substantial genomic sequence variation is present in a real metagenome. Our software implementation is available at https://github.com/ spacegraphcats/spacegraphcats under the 3-Clause BSD License.
As the scale of biological data generation has increased, the bottleneck of research has shifted from data generation to analysis. Researchers commonly need to build computational workflows that include multiple analytic tools and require incremental development as experimental insights demand tool and parameter modifications. These workflows can produce hundreds to thousands of intermediate files and results that must be integrated for biological insight. Data-centric workflow systems that internally manage computational resources, software, and conditional execution of analysis steps are reshaping the landscape of biological data analysis and empowering researchers to conduct reproducible analyses at scale. Adoption of these tools can facilitate and expedite robust data analysis, but knowledge of these techniques is still lacking. Here, we provide a series of strategies for leveraging workflow systems with structured project, data, and resource management to streamline large-scale biological analysis. We present these practices in the context of high-throughput sequencing data analysis, but the principles are broadly applicable to biologists working beyond this field.
The sourmash software package uses MinHash-based sketching to create "signatures", compressed representations of DNA, RNA, and protein sequences, that can be stored, searched, explored, and taxonomically annotated. sourmash signatures can be used to estimate sequence similarity between very large data sets quickly and in low memory, and can be used to search large databases of genomes for matches to query genomes and metagenomes. sourmash is implemented in C++, Rust, and Python, and is freely available under the BSD license at http://github.com/dib-lab/sourmash. bioinformatics, sequence analysis, MinHash, k-mer, sourmash
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.