The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fillin-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AUTOPROMPT, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AUTO-PROMPT, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
Recent advances in deep neural networks have enabled algorithms to compose music that is comparable to music composed by humans. However, few algorithms allow the user to generate music with tunable parameters. The ability to tune properties of generated music will yield more practical benefits for aiding artists, filmmakers, and composers in their creative tasks. In this paper, we introduce DeepJ -an end-to-end generative model that is capable of composing music conditioned on a specific mixture of composer styles. Our innovations include methods to learn musical style and music dynamics. We use our model to demonstrate a simple technique for controlling the style of generated music as a proof of concept. Evaluation of our model using human raters shows that we have improved over the Biaxial LSTM approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.