Stem-cell niche signaling is short-range in nature, such that only stem cells but not their differentiating progeny receive self-renewing signals. At the apical tip of the Drosophila testis, 8 to 10 germline stem cells (GSCs) surround the hub, a cluster of somatic cells that organize the stem-cell niche. We have previously shown that GSCs form microtubule-based nanotubes (MT-nanotubes) that project into the hub cells, serving as the platform for niche signal reception; this spatial arrangement ensures the reception of the niche signal specifically by stem cells but not by differentiating cells. The receptor Thickveins (Tkv) is expressed by GSCs and localizes to the surface of MT-nanotubes, where it receives the hub-derived ligand Decapentaplegic (Dpp). The fate of Tkv receptor after engaging in signaling on the MT-nanotubes has been unclear. Here we demonstrate that the Tkv receptor is internalized into hub cells from the MT-nanotube surface and subsequently degraded in the hub cell lysosomes. Perturbation of MT-nanotube formation and Tkv internalization from MT-nanotubes into hub cells both resulted in an overabundance of Tkv protein in GSCs and hyperactivation of a downstream signal, suggesting that the MT-nanotubes also serve a second purpose to dampen the niche signaling. Together, our results demonstrate that MT-nanotubes play dual roles to ensure the short-range nature of niche signaling by (1) providing an exclusive interface for the niche ligand-receptor interaction; and (2) limiting the amount of stem cell receptors available for niche signal reception.
Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the Drosophila ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.
Microtubule acetylation is found in populations of stable, long-lived microtubules, occurring on the conserved lysine 40 (K40) residue of α-tubulin by α-tubulin acetyltransferases (αTATs). α-tubulin K40 acetylation has been shown to stabilize microtubules via enhancing microtubule resilience against mechanical stress. Here we show that a previously uncharacterized αTAT, Drosophila CG17003/leaky (lky), is required for α-tubulin K40 acetylation in early germ cells in Drosophila ovary. We found that loss of lky resulted in a progressive egg chamber fusion phenotype accompanied with mislocalization of germline-specific Vasa protein in somatic follicle cells. The same phenotype was observed upon replacement of endogenous α-tubulin84B with non-acetylatable α-tubulin84BK40A, suggesting α-tubulin K40 acetylation is responsible for the phenotype. Chemical disturbance of microtubules by Colcemid treatment resulted in a mislocalization of Vasa in follicle cells within a short period of time (~30 min), suggesting that the observed mislocalization is likely caused by direct leakage of cellular contents between germline and follicle cells. Taken together, this study provides a new function of α-tubulin acetylation in maintaining the cellular identity possibly by preventing the leakage of tissue-specific gene products between juxtaposing distinct cell types.
Stem cell niche signals act over a short range so that only stem cells but not the differentiating daughter cells receive the self-renewal signals. Drosophila female germline stem cells (GSCs) are maintained by short range BMP signaling; BMP ligands Dpp/Gbb activate receptor Tkv to phosphorylate Mad (phosphor-Mad or pMad) which accumulates in the GSC nucleus and activates the stem cell transcription program. pMad is highly concentrated in the nucleus of the GSC, but is immediately downregulated in the nucleus of the pre-cystoblast (preCB), a differentiating daughter cell, that is displaced away from the niche. Here we show that this asymmetry in the intensity of pMad is formed even before the completion of cytokinesis. A delay in establishing the pMad asymmetry leads to germline tumors through conversion of differentiating cells into a stem cell-like state. We show that a Mad phosphatase Dullard (Dd) interacts with Mad at the nuclear pore, where it may dephosphorylate Mad. A mathematical model explains how an asymmetry can be established in a common cytoplasm. It also demonstrates that the ratio of pMad concentrations in GSC/preCB is highly sensitive to Mad dephosphorylation rate. Our study reveals a previously unappreciated mechanism for breaking symmetry between daughter cells during asymmetric stem cell division.
Stem-cell niche signaling is short-range in nature, such that only stem cells and not their differentiating progeny experience self-renewing signals 1 . At the apical tip of the Drosophila testes, 8 to 10 germline stem cells (GSCs) surround the hub, the niche signaling center. Microtubule-based nanotubes (MT-nanotubes) formed by GSCs project into the hub cells, serves as the platform for niche signal reception. Here we show that the receptor for Decapentaplegic (Dpp) accumulated on MT-nanotubes is internalized into hub cells together with the Dpp ligand, and both are degraded in the hub cell lysosomes. Perturbation of hub lysosomal function or MT-nanotube formation lead to excess receptor retention within GSCs as well as excess Dpp ligand that diffuses out of the hub. Our results indicate that degradation of the self-renewal ligand/receptor by niche cells specially restrict the niche signal range, and that might be a general feature of stem-cell niche signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.