Functional variants in the genome are usually identified by their association with local gene expression, DNA methylation or chromatin states. DNA sequence motif analysis and chromatin immunoprecipitation studies have provided indirect support for the hypothesis that functional variants alter transcription factor binding to exert their effects. In this study, we provide direct evidence that functional variants can alter transcription factor binding. We identify a multifunctional variant within the
TBC1D4
gene encoding a canonical NFκB binding site, and edited it using CRISPR-Cas9 to remove this site. We show that this editing reduces
TBC1D4
expression, local chromatin accessibility and binding of the p65 component of NFκB. We then used CRISPR without genomic editing to guide p65 back to the edited locus, demonstrating that this re-targeting, occurring ~182 kb from the gene promoter, is enough to restore the function of the locus, supporting the central role of transcription factors mediating the effects of functional variants.
As sequencing and analysis techniques provide increasingly detailed data at a plummeting cost, it is increasingly popular to seek the answers to medical and public health challenges in the DNA sequences of affected populations. This is methodologically attractive in its simplicity, but a genomics-only approach ignores environmentally mediated health disparities, which are well-documented at multiple national and global scales. While genetic differences exist among populations, it is unlikely that these differences overcome social and environmental factors in driving the gap in health outcomes between privileged and oppressed communities. We advocate for following the lead of communities in addressing their self-identified interests, rather than treating widespread suffering as a convenient natural experiment.
Background: Single-cell technologies to analyze transcription and chromatin structure have been widely used in many research areas to reveal the functions and molecular properties of cells at single-cell resolution. Sample multiplexing techniques are valuable when performing single-cell analysis, reducing technical variation and permitting cost efficiencies. Several commercially available methods are available and have been used in many scRNA-seq studies. On the other hand, while several methods have been published, the multiplexing techniques for single nuclear Assay for Transposase-Accessible Chromatin (snATAC)-seq assays remain under development. We developed a simple nucleus hashing method using oligonucleotide conjugated antibodies recognizing nuclear pore complex proteins, NuHash, to perform snATAC-seq library preparations by multiplexing. Results: We performed multiplexing snATAC-seq analyses on the mixture of human and mouse cell samples (two samples, 2-plex, and four samples, 4-plex) using NuHash. The demultiplexing accuracy of NuHash was high, and only ten out of 9,144 nuclei (2-plex) and 150 of 12,208 nuclei (4-plex) had discordant classifications between NuHash demultiplexing and discrimination using reference genome alignments. We compared results between snATAC-seq and deeply sequenced bulk ATAC-seq on the same samples and found that most of the peaks detected in snATAC-seq were also detected in deeply sequenced bulk ATAC-seq. The bulk ATAC-seq signal intensity was positively correlated with the number of cell subtype clusters detected in snATAC-seq, but not the subset of peaks detected in all clusters. These subsets of snATAC-seq peaks showed different distributions over different genomic features, suggesting that the peak intensities of bulk ATAC-seq can be used to identify different types of functional loci. Conclusions: Our multiplexing method using oligo-conjugated anti-nuclear pore complex proteins, NuHash, permits high accuracy demultiplexing of samples. The NuHash protocol is straightforward, it works on frozen samples, and requires no modifications for snATAC-seq library preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.