Abstract-A lossless multi-way outphasing and power combining system for microwave power amplification is presented. The architecture addresses one of the primary drawbacks of Chireix outphasing; namely, the sub-optimal loading conditions for the branch power amplifiers. In the proposed system, four saturated power amplifiers interact through a lossless power combining network to produce nearly resistive load modulation over a 10:1 range of output powers. This work focuses on two microstrip-based power combiner implementations: a hybrid microstrip/discrete implementation using a combination of microstrip transmission line sections with discrete shunt elements, and an all-microstrip implementation incorporating open-circuited radial stubs. We demonstrate and compare these techniques in a 2.14 GHz power amplifier system. With the allmicrostrip implementation, the system demonstrates a peak CW drain efficiency of 70% and drain efficiency of over 60% over a 6.5-dB outphasing output power range with a peak power of over 100 W. We demonstrate W-CDMA modulation with 55.6% average modulated efficiency at 14.1 W average output power for a 9.15-dB peak to average power ratio (PAPR) signal. The performance of this all-microstrip system is compared to that of the proposed hybrid microstrip/discrete version and a previously reported implementation in discrete lumped-element form.Index Terms-base stations, outphasing, power amplifier (PA), wideband code division multiple access (W-CDMA), Chireix, LINC, load modulation.
Abstract-Microwave-to-dc rectification is valuable in many applications including rf energy recovery, dc-dc conversion, and wireless power transfer. In such applications, it is desired for the microwave rectifier system to provide a constant rf input impedance. Consequently, variation in rectifier input impedance over varying incident power levels can hurt system performance. To address this challenge, we introduce multi-way transmissionline resistance compression networks (TLRCNs) for maintaining near-constant input impedance in rf-to-dc rectifier systems. A development of TLRCNs is presented, along with their application to rf-to-dc conversion and wireless power transfer. We derive analytical expressions for the behavior of TLRCNs, and describe two design methodologies applicable to both single and multi-stage implementations. A 2.45-GHz 4-way TLRCN network is implemented and applied to create a 4-Watt resistancecompressed rectifier system that has narrow-range resistive input characteristics over a 10-dB power range. It is demonstrated to improve the impedance match to mostly-resistive but variable input impedance class-E rectifiers over a 10-dB power range. The resulting TLRCN plus rectifier system has >50% rf-to-dc conversion efficiency over a >10-dB input power range at 2.45 GHz (peak efficiency 70%), and SWR <1.1 over a 7.7-dB range, despite a non-negligible reactive component in the rectifier loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.