Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The 'exposome' represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms.
Background The majority of infants will not be protected by maternal antibodies until their first measles vaccination, between 12 and 15 months of age. This provides incentive to reduce the age at measles vaccination, but immunological consequences are insufficiently understood, and long-term effects are largely unknown. Methods A total of 79 infants who received early measles vaccination between 6 and 12 months age and a second dose at 14 months of age were compared to 44 children in a control group who received 1 dose at 14 months of age. Measles virus–specific neutralizing antibody concentrations and avidity were determined up to 4 years of age. Results Infants who first received measles vaccination before 12 months of age had a long-term decrease in the concentration and avidity of measles virus–specific neutralizing antibodies, compared with infants in the control group. For 11.1% of children with a first dose before 9 months of age, antibody levels at 4 years of age had dropped below the cutoff for clinical protection. Conclusions Early measles vaccination provides immediate protection in the majority of infants but yields a long-term decrease in neutralizing antibody responses, compared to vaccination at a later age. Additional vaccination at 14 months of age does not improve this. Over the long term, this may result in an increasing number of children susceptible to measles.
Sound monitoring and evaluation (M&E) systems are needed to inform effective biofortification program management and implementation. Despite the existence of M&E frameworks for biofortification programs, the use of indicators, metrics, methods, and tools (IMMT) are currently not harmonized, rendering the tracking of biofortification programs difficult. We aimed to compile IMMT for M&E of existing biofortification programs and recommend a sub-set of high-level indicators (HLI) for a harmonized global M&E framework. We conducted (1) a mapping review to compile IMMT for M&E biofortification programs; (2) semi-structured interviews (SSIs) with biofortification programming experts (and other relevant stakeholders) to contextualize findings from step 1; and (3) compiled a generic biofortification program Theory of Change (ToC) to use it as an analytical framework for selecting the HLI. This study revealed diversity in seed systems and crop value chains across countries and crops, resulting in differences in M&E frameworks. Yet, sufficient commonalities between implementation pathways emerged. A set of 17 HLI for tracking critical results along the biofortification implementation pathway represented in the ToC is recommended for a harmonized global M&E framework. Further research is needed to test, revise, and develop mechanisms to harmonize the M&E framework across programs, institutions, and countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.