Comparing spaceborne satellite images of Landsat‐8 Operational Land Imager (OLI) and Landsat‐7 Enhanced Thematic Mapper plus (ETM+) was undertaken to investigate the relative accuracy of mapping hydrothermal alteration minerals. The study investigated the northern part of Rabor, which contains copper mineralization occurrences, and is located in the Kerman Cenozoic magmatic assemblage (KCMA), Iran. Image processing methods of band ratio, principal component analysis (PCA), and spectral angle mapper (SAM) were used to map the distribution of hydrothermally altered rocks associated with the porphyry copper mineralization. The band ratio combination of both sensors for mapping altered areas showed similar outcomes. PCA exposed variations in the spatial distribution of hydroxyl‐bearing minerals. The representation of hydrothermal areas using OLI data was more satisfactory than when using ETM+ data. SAM analysis found similar results for mapping hydroxyl‐bearing zones. Verification of the results came through ground investigation and laboratory studies. Rock samples (n = 56) were collected to validate results using thin sections, X‐ray diffraction (XRD) and spectral analyses. Field observations and laboratory analysis revealed that phyllic and propylitic alterations dominate the alteration zones in the study area. Argillic and iron oxides/hydroxides alterations were observed to a lesser degree. The results indicate that alteration maps prepared by OLI data using PCA for visual interpretation are more suitable than those of ETM+ due to a higher radiometric resolution and lower interference between vegetation and altered areas. As the spectral bandwidth of ETM+ band 7 covers absorption feature of propylitic alteration, better mapping of propylitic alterations is achieved using ETM+ data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.