The security of any system is a key factor toward its acceptability by the general public. We propose an intuitive approach to fraud detection in financial institutions using machine learning by designing a Hybrid Credit Card Fraud Detection (HCCFD) system which uses the technique of anomaly detection by applying genetic algorithm and multivariate normal distribution to identify fraudulent transactions on credit cards. An imbalance dataset of credit card transactions was used to the HCCFD and a target variable which indicates whether a transaction is deceitful or otherwise. Using F-score as performance metrics, the model was tested and it gave a prediction accuracy of 93.5%, as against artificial neural network, decision tree and support vector machine, which scored 84.2%, 80.0% and 68.5% respectively, when trained on the same data set. The results obtained showed a significant improvement as compared with the other widely used algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.