To better understand the pathophysiology and functional outcomes of musculoskeletal and neuromotor pathologies, research is often conducted in mice models. As a key component of such research, metrics of movement, loading, symmetry, and stability all have to be assessed, ideally requiring the measurement of 3D ground reaction forces, which can be difficult. While the measurement of ground reaction forces (GRF) is well developed for humans, appropriate devices for mice remain rare or inadequate. Such devices need to combine high sensitivity with small dimensions, especially when the forces for each individual paw should be measured. As preparation for building such a device that can measure 3D GRF per paw in mice in an upcoming study, this systematic review of the literature identified 122 articles and 49 devices that measured the ground reaction forces for mice and other small animals. Based on a variety of criteria, such as sensitivity and resonance frequency, the miniaturisation of each device and/or its capability to measure the three components of the ground reaction forces in individual paws were judged. The devices were consequently classified; eight devices were classified as “can be adapted”, nine as “hard to be adapted”, and 24 as “cannot be adapted”.
The measurement of ground reaction forces (GRFs) helps in determining the role of each limb for support and propulsion in predicting muscle activities, and in determining the strain conditions experienced by bones. Measuring the GRFs in mice models is therefore a cornerstone for understanding rodent musculoskeletal and neuromotor systems, as well as for improved translation of knowledge to humans. Current force plates are too big in size to allow the measurement of forces for each paw. This limitation is mainly due to the large size of the used sensors. The goal of our study was therefore to develop a small 3D force sensor for application in rodent gait analysis. We designed a flexible and small mechanical structure (8 mm × 8 mm) to isolate force components. Using FEM simulation, we chose the area with the highest strain to fix two strain gauges for each direction. The small size of the sensor allows us to fix four of them under a plate on the mouse paw size (approximately 17 mm). According to our primary results, the force plate has a resolution of 2 mN in the vertical direction and 1 mN in the fore-aft and mediolateral directions. The construction of a runway with such a force plate will allow the measurement of GRFs and the centre of pressure of each rodent paw for different steps. Such techniques thus provide a basis for assessing functionality in mice models, towards improved translation of rodent research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.