Sodium alginate (Na-Alg) is water-soluble, neutral, and linear polysaccharide. It is the derivative of alginic acid which comprises 1,4-β-d-mannuronic (M) and α-l-guluronic (G) acids and has the chemical formula (NaC6H7O6). It shows water-soluble, non-toxic, biocompatible, biodegradable, and non-immunogenic properties. It had been used for various biomedical applications, among which the most promising are drug delivery, gene delivery, wound dressing, and wound healing. For different biomedical applications, it is used in different forms with the help of new techniques. That is the reason it had been blended with different polymers. In this review article, we present a comprehensive overview of the combinations of sodium alginate with natural and synthetic polymers and their biomedical applications involving delivery systems. All the scientific/technical issues have been addressed, and we have highlighted the recent advancements.
Cost-effective, clean, highly transparent, and flexible as well as a coatable packaging material is envisioned to solve or at least mitigate quality preservation issues of organic materials, originating from moisture interaction under ambient conditions. Liquid phase processing of packaging coatings using nano-clay and polyvinyl alcohol (PVOH) has been developed and reported. Detailed analysis of the developed coating revealed moisture permeability of 2.8 × 10−2 g·cm/m2·day at 40 °C and 85% relative humidity (RH), which is in close accordance with Bharadwaj’s theoretical permeability model. Moreover, the developed coatings are not only more than 90% transparent, when exposed to white light, but also exhibit excellent flexibility and even after going through 10,000 bending cycles maintained the same blocking effect against moisture.
Hydrogen is a great sourcez of energy due to having zero emission of carbon-based contents. It is found primarily in water, which is abundant and renewable. For electrochemical splitting of water molecules, it is necessary to use catalytic materials that minimize energy consumption. As a famous carbon material, graphitic carbon nitride, with its excellent physicochemical properties and diversified functionalities, presents great potential in electrocatalytic sensing. In the present work, graphitic carbon nitride-fabricated metal tungstate nanocomposites are synthesized by the hydrothermal method to study their applications in catalysis, electrochemical sensing, and water splitting for hydrogen production. Nanocomposites using different metals, such as cobalt, manganese, strontium, tin, and nickel, were used as a precursor are synthesized via the hydrothermal process. The synthesized materials (g-C3N4/NiWO4, g-C3N4/MnWO4, g-C3N4/CoWO4, g-C3N4/SnWO4, g-C3N4/SrWO4) were characterized using different techniques, such as FTIR and XRD. The presence of a functional groups between the metal and tungstate groups was confirmed by the FTIR spectra. All the nanocomposites show a tungstate peak at 600 cm−1, while the vibrational absorption bands for metals appear in the range of 400–600 cm−1. X-ray diffraction (XRD) shows that the characteristic peaks matched with the JCPDS in the literature, which confirmed the successful formation of all nanocomposites. The electrochemical active surface area is calculated by taking cyclic voltammograms of the potassium–ferrocyanide redox couple. Among the entire series of metal tungstate, the g-C3N4/NiWO4 has a large surface area owing to the high conductive properties towards water oxidation. In order to study the electrocatalytic activity of the as-synthesized materials, electrochemical water splitting is performed by cyclic voltammetry in alkaline medium. All the synthesized materials proved to be efficient catalysts with enhanced conductive properties towards water oxidation. Among the entire series, g-C3N4-NiWO4 is a very efficient electrocatalyst owing to its higher active surface area and conductive activity. The order of electrocatalytic sensing of the different composites is: g-C3N4-NiWO4 > g-C3N4-SrWO4 > g-C3N4-CoWO4 > g-C3N4-SnWO4 > g-C3N4-MnWO4. Studies on electrochemically synthesized electrocatalysts revealed their catalytic activity, indicating their potential as electrode materials for direct hydrogen evolution for power generation.
Objective: To determine the diagnostic accuracy and agreement between ultrasound and magnetic resonance (MR) imaging in determining rotator cuff tears. Study Design: Cross-sectional study. Place and Duration of the Study: Armed Forces Institute of Radiology and Imaging, Pak Emirates Military Hospital,Rawalpindi Pakistan, from Jul 2018 to Jan 2019. Methodology: Patients of either gender with a traumatic shoulder injury duration of less than 15 days were consecutively included. Rotator cuff tear on ultrasonography was diagnosed on the presence of a hypoechoic discontinuity in the tendon and accentuation of cartilage shadow, giving a 'double cortex' view while on MRI, the hyper-intense signal area within the tendon on T2W, fat-suppressed and GRE sequences, corresponding to fluid signal seen. Results: Of 88 patients, the mean age was 54.022±5.19 years. Ultrasound diagnosed rotator cuff tears in 42(47.7%) patients, and MRI diagnosed rotator cuff tears in 44(50.0%) patients. Diagnostic accuracy of ultrasound taking MR imaging as the gold standard showed sensitivity as 81.82%, specificity as 77.27%, negative predicted value as 78.26%, positive predicted value as 80.95%, and overall diagnostic accuracy as 79.55%. A moderate agreement was found between ultrasound and MRI findings (p-value=0.591). Conclusion: The findings of the current study showed significant moderate agreement between ultrasound and MR imaging in the determination of rotator-cuff tears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.