Infectious disease malaria is a devastating infectious disease that claims the lives of more than 500,000 people worldwide every year. Most of these deaths occur as a result of a delayed or incorrect diagnosis. At the moment, the manual microscope is considered to be the most effective equipment for diagnosing malaria. It is, on the other hand, time-consuming and prone to human error. Because it is such a serious global health issue, it is important that the evaluation process be automated. The objective of this article is to advocate for the automation of the diagnosis process in order to eliminate the need for human intervention in the process. Convolutional neural networks (CNNs) and other deep-learning technologies, such as image processing, are being utilized to evaluate parasitemia in microscopic blood slides in order to enhance diagnostic accuracy. The approach is based on the intensity characteristics of Plasmodium parasites and erythrocytes, which are both known to be variable. Images of infected and noninfected erythrocytes are gathered and fed into the CNN models ResNet50, ResNet34, VGG-16, and VGG-19, which are all trained on the same dataset. The techniques of transfer learning and fine-tuning are employed, and the outcomes are contrasted. The VGG-19 model obtained the best overall performance given the parameters and dataset that were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.