FRC (Fibre Reinforced Concrete) is fibrous material which increases its structural integrity, resists to explosive spalling in case of environmental affects, improves mix cohesion, improves ductility, reduces of steel reinforcement requirements and reduces the voids due to good stiffness. It contains short discrete fibres that are uniformly distributed. Mostly, natural fibers are the waste material which may have negative impact on environment. Synthetic fibres include steel fibres and glass fibres but natural fibres are coconut fibres and human hair fibres which tends to vary the properties to concrete. In addition, the character of FRC changes with varying concrete, fibre material, geometries, distribution, orientation and densities. Hair fibre concrete gives a practical, cost-effective and convenient method to avoid cracks and deficiencies regarding strength and proper mixing ratio which occurs at a longer period. Fibres have been used to reduce plastic shrinkage and drying shrinkage in concrete. In some structural elements, fibrous concrete can be used to reduce the cost of structure. Different fibres are used to improve the tensile strength of concrete. Human hair are strong in tension. Hair fibres can be utilized as a strengthening material. Hair fibre is a non-decay able matter and available at a cheap rate. Experiments have been performed on fibrous concrete cylinders containing various percentages of human hair which is 0, 0.5, 1 and 1.5% by the weight of cement. A total of seventy-two cylinders have been prepared with FRC having different %ages of hair content. Workability, compressive strength and split tensile strength have been checked at three curing ages i.e. 7, 14 and 28 days. This research will open a new wicket in the horizon of reuse of waste material efficiently in construction industry. This innovation in construction industry will save our natural resources and use fibre in productive and an effective approach.
Mostly used material is concrete which has versatile quality for construction works. Fibrous concrete have significant factor that improve the scale and value to concrete for humid environments with significant role. Day by day abundant demand and use of concrete is increasing. It is considered as a 2nd largest building material due to the major productivity. By the use of fibrous concrete, some bonding and environmental issues have been addressed. Keeping in this view, an experimental based study is conducted to evaluate the strength of fiber reinforced concrete at different percentages 0%, 0.5%, 1.0%, 1.5% and 2.0%. All percentages are added by the weight of concrete with all fibers. In this connection, one hundred and fifty-three cylinders of five mixes are prepared. Workability checked of fresh concrete during the pouring of concrete cylinders. Poured cylinders’ samples are left for different curing ages at 7 and 28 days. One hundred and two cylinders for compression at 7 and 28days but fifty-one cylinders for split tensile test at 28days with all fibers i.e. glass fiber, steel fiber, coconut fiber and polypropylene fiber. After curing, compression and split tensile tests are performed to check the strength of hardened concrete. Workability of five mixes lies between 40-90mm.Fibrous concrete is suitable for humid environment where high strength and voids less concrete are required. Addition of fibers in concrete may improves the strength parameters as well as to increase the bonding and tensile properties of concrete. It reduces the quantity of water to be used in concrete. Also the use of different types of fibers has been proved to be economical and is considered as environmental friendly construction material.
This paper proposes a novel approach for solving the problem of collision avoidance for autonomous vehicles starting from data provided by LiDAR sensors. Rather than attempting the actual recognition of pedestrians or other moving or static objects – as in the solutions based on machine learning - we define “safety bubbles” around the vehicle and all the other moving entities identified within the on-vehicle LiDAR sensing area, and issue a signal for the upper control layers when the boundary of the vehicle’s safety bubble intersects with other objects’ bubbles. The shape and size of these safety bubbles are dynamically adjusted depending on the speed of the objects. This solution is an extension/adaptation of an idea successfully applied in one of our previous works in the context of the problem of obstacle avoidance for mobile robots. The proposed algorithm was tested using CARLA simulator with promising results, as it reduces the required computational load, so that it can be used in real time, with commercially available LiDAR sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.