Background: Research on prognostic prediction models frequently uses data from routine healthcare. However, potential misclassification of predictors when using such data may strongly affect the studied associations. There is no doubt that such misclassification could lead to the derivation of suboptimal prediction models. The extent to which misclassification affects the validation of existing prediction models is currently unclear. We aimed to quantify the amount of misclassification in routine care data and its effect on the validation of the existing risk prediction model. As an illustrative example, we validated the CHA2DS2-VASc prediction rule for predicting mortality in patients with atrial fibrillation (AF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.