Urban heat stress poses a major risk to public health. Case studies of individual cities suggest that heat exposure, like other environmental stressors, may be unequally distributed across income groups. There is little evidence, however, as to whether such disparities are pervasive. We combine surface urban heat island (SUHI) data, a proxy for isolating the urban contribution to additional heat exposure in built environments, with census tract-level demographic data to answer these questions for summer days, when heat exposure is likely to be at a maximum. We find that the average person of color lives in a census tract with higher SUHI intensity than non-Hispanic whites in all but 6 of the 175 largest urbanized areas in the continental United States. A similar pattern emerges for people living in households below the poverty line relative to those at more than two times the poverty line.
A growing literature documents the effects of heat stress on premature mortality and other adverse health outcomes. Urban heat islands (UHI) can exacerbate these adverse impacts in cities by amplifying heat exposure during the day and inhibiting the body's ability to recover at night. Since the UHI intensity varies not only across, but also within cities, intra-city variation may lead to differential impact of urban heat stress on different demographic groups. To examine these differential impacts, we combine satellite observations with census data to evaluate the relationship between distributions of both UHI and income at the neighborhood scale for 25 cities around the world. We find that in most (72%) cases, poorer neighborhoods experience elevated heat exposure, an incidental consequence of the intra-city distribution of income in cities. This finding suggests that policymakers should consider designing city-specific UHI reduction strategies to mitigate its impacts on the most socioeconomically vulnerable populations who may be less equipped to adapt to environmental stressors. Since the strongest contributor of intra-urban UHI variability among the physical characteristics considered in this study is a neighborhood's vegetation density, increasing green space in lower income neighborhoods is one strategy urban policymakers can adopt to ameliorate some of UHI's inequitable burden on economically disadvantaged residents.
The ubiquitous nature of satellite data has led to an explosion of studies on the surface urban heat island (SUHI). Relatively few have simultaneously used air temperature measurements to compare SUHI with the canopy UHI (CUHI), which is more relevant to public health. Using crowdsourced citizen weather stations (>50,000) and satellite data over Europe, we estimate the CUHI and SUHI intensity in 342 urban clusters during the 2019 heat wave. Satellites produce a sixfold overestimate of UHI relative to station measurements (mean SUHI 1.45°C; CUHI 0.26°C), with SUHI exceeding CUHI in 96% of cities during daytime and in 80% at night. Using empirical evidence, we confirm the control of aerodynamic roughness on UHI intensity, but find evaporative cooling to have a stronger overall impact during this time period. Our results support urban greening as an effective UHI mitigation strategy and caution against relying on satellite data for urban heat risk assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.