Background: The microbiological quality of three vegetable crops (cabbages, carrots, lettuces) and their irrigation water from the lake system of the city of Yamoussoukro were studied. The pollution indicator used is Escherichia coli (E. coli), of the thermotolerant coliform family. Methods: During the period 2017-2019, in four dry and four wet seasons, a total of 744 water samples and 13392 vegetable samples were collected in five (5) lakes belonging to the lake system. The lakes were selected because of their position in the system. The E. coli loads were evaluated after isolation on a specific COMPASS ECC Agar and confirmed with Polymerase chain reaction (PCR) and the physicochemical parameters of the lakes, evaluated according to their respective ISO standards. Result: In irrigation waters, bacterial loads and physico-chemical parameters generally have evolved from the upstream lakes to those downstream of the lake system (from lake A to lake E). Values were higher during the rainy seasons. E. coli loads on vegetables were strongly correlated with those of irrigation water, especially in dry seasons. Spearman’s correlations revealed significant correlations between turbidity, DOC and bacterial loads. The risk of bacterial transmission between lake waters and surrounding vegetables is proven.
This study examined the distribution of Escherichia coli (E. coli) resistant to eleven antibiotics and possible relationships among physico-chemical parameters and these resistances. It was carried out over two years during four climatic seasons in five lakes of the Yamoussoukro lake system in Côte d'Ivoire. The physicochemical parameters of the lakes studied are temperature, pH, dissolved oxygen (DO), dissolved organic carbon (DOC), turbidity, nitrates, orthophosphates and ammoniacal nitrogen. A total of 744 water samples were collected from five (5) lakes belonging to the lake system, over a two-year period, during four dry and four wet seasons. Escherichia coli loadings were evaluated after isolation on specific chromogenic medium COMPASS ECC Agar and the susceptibility to antibiotics by the agar diffusion method. Physico-chemical parameters were evaluated according to international standards. The physico-chemical results showed that the nutrient contents evolved generally from upstream to downstream of the lake system, independently of the sources of pollution of five lakes of system. However, the lake B, in upstream of the lake system, showed levels of nitrate, orthophosphate and ammoniacal nitrogen often similar to the downstream lakes. This demonstrates a source of chemical pollution in this lake, which flows to lakes D and E, which are themselves subject to other pollution. Bacterial loads and bacterial resistance to antibiotics have strictly evolved from upstream to downstream of the system. Most isolates were resistant to ampicillin (16.46%), tetracycline (12.87%), ciprofloxacin (12.86%) and sulfamethoxazole (10.14%). Antibiotic resistance patterns of E. coli isolates were similar in both years studied, but higher during rainy seasons (GRS and SRS). The spearman rank correlations and the principal component analysis (PCA) revealed significant correlations between bacterial resistance to antibiotics in lakes and water physico-chemical parameters. Turbidity and DOC can help to determine the main resistances in the lake D. Orthophosphates can help to understand the resistance of chloramphenicol and the nitrates can help to understand the resistance of ampicillin in the lake B. Resistance in the lakes A, B and C can be influenced by dissolved oxygen. Overall, this study provided baseline information on bacterial resistance in the lakes of Yamoussoukro in Côte d'Ivoire, showing that these lakes could be reservoirs of antibiotic resistance, potentially dangerous to public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.