There is an urgent need to develop effective vaccines against pneumonic plague, a highly lethal and contagious disease caused by the Gram-negative bacterium Yersinia pestis. Here we demonstrate that a novel DNA vaccine expressing a modified V antigen (LcrV) of Y. pestis, with a human tissue plasminogen activator (tPA) signal sequence, elicited strong V-specific antibody responses in BALB/c mice. This tPA-V DNA vaccine protected mice from intranasal challenge with lethal doses of Y. pestis. In comparison, a DNA vaccine expressing the wild type V antigen was much less effective. Only tPA-V formed oligomers spontaneously, and elicited a higher IgG2a anti-V antibody response in immunized mice, suggesting increased TH1 type cellular immune response. Our data indicate that antigen engineering is effective in inducing high quality protective immune responses against conformationally sensitive antigens. These results support that optimized DNA vaccines have the potential to protect against bacterial pathogens than is generally recognized.
A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.
Strategies are needed for human immunodeficiency virus type 1 vaccine development that improves the neutralizing antibody response against primary isolates of the virus. Here we examined recombinant DNA priming followed by subunit protein boosting as a strategy to generate neutralizing antibodies. Both plasmidbased and recombinant protein envelope (Env) glycoprotein immunogens were derived from a primary viral isolate, JR-FL. Serum from rabbits immunized with either gp120 or gp140 DNA vaccines delivered by gene gun inoculation followed by recombinant gp120 protein boosting was capable of neutralizing JR-FL. Neither the DNA vaccines alone nor the gp120 protein alone generated a detectable neutralizing antibody response against this virus. Neutralizing antibody responses using gp120 DNA and gp140 DNA for priming were similar. The results suggest that Env DNA priming followed by gp120 protein boosting provides an advantage over either approach alone for generating a detectable neutralizing antibody response against primary isolates that are not easily neutralized.Neutralizing antibodies are considered critical immune components for effective vaccination against human immunodeficiency virus type 1 (HIV-1) infection and disease (5,10,16,19). The HIV-1 envelope glycoproteins (Env) are the primary viral antigens targeted by neutralizing antibodies. However, efforts to develop an Env-based immunogen that elicits an effective neutralizing antibody response are hampered by the high mutation rate of the virus in infected individuals (23) and the resulting genetic heterogeneity and structural complexity exhibited by Env (24). Thus, an effective HIV-1 vaccine will need to target a plethora of genetic and antigenic variants of the virus.A variety of candidate HIV-1 vaccines have included Env for the purpose of generating a neutralizing antibody response (8,14,20). Among these, DNA vaccines have proven to be poor inducers of neutralizing antibodies on their own but nonetheless prime for a detectable neutralizing antibody response after Env protein boosting (1,9,11,13,21,22). Unfortunately, the neutralizing antibodies generated in these studies have primarily targeted T-cell-line-adapted strains and a small fraction of primary isolates of HIV-1 that are unusually sensitive to neutralization. Most primary isolates of HIV-1 are substantially less sensitive to neutralization and more difficult to target with vaccines (2-4, 15).It has not been clear whether the DNA prime and protein boost strategy affords an advantage over Env protein immunization alone with respect to the elicitation of a neutralizing antibody response that targets typical primary HIV-1 isolates that are not easily neutralized. In this regard, the JR-FL strain of HIV-1 exhibits such a neutralization phenotype (6) and therefore represents a relevant viral target upon which different vaccine strategies can be evaluated and compared. In the present study, we investigated the ability of the JR-FL gp120 protein to generate a neutralizing antibody response with and with...
The Spike (S) protein of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) plays important roles in viral pathogenesis and potentially in the development of an effective vaccine against this virulent infectious disease. In this study, the codon-optimized S gene of SARS-CoV was synthesized to construct DNA vaccine plasmids expressing either the full-length or segments of the S protein. High titer S-specific immunoglobulin G antibody responses were elicited in rabbits immunized with DNA against various segments of the S protein. Two neutralizing domains were identified on the S protein, one at the N terminus (Ser12-Thr535) and the other near the C terminus (Arg797-Ile1192).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.