Commonsense reasoning is intuitive for humans but has been a long-term challenge for artificial intelligence (AI). Recent advancements in pretrained language models have shown promising results on several commonsense benchmark datasets. However, the reliability and comprehensiveness of these benchmarks towards assessing model's commonsense reasoning ability remains unclear. To this end, we introduce a new commonsense reasoning benchmark dataset comprising natural language true/false statements, with each sample paired with its complementary counterpart, resulting in 4k sentence pairs. We propose a pairwise accuracy metric to reliably measure an agent's ability to perform commonsense reasoning over a given situation. The dataset is crowdsourced and enhanced with an adversarial model-in-the-loop setup to incentivize challenging samples. To facilitate a systematic analysis of commonsense capabilities, we design our dataset along the dimensions of knowledge domains, reasoning scenarios and numeracy. Experimental results demonstrate that our strongest baseline (UnifiedQA-3B), after fine-tuning, achieves~71% standard accuracy and~51% pairwise accuracy, well below human performance (~95% for both metrics).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.