Despite their favorable pharmacokinetic properties, singlechain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 ؋ 10 ؊9 to 1.5 ؋ 10Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 ؋ 10 ؊10 to <1.8 ؋ 10 ؊12 M. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86°C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.Because of their favorable pharmacokinetic properties, single-chain Fv (scFv) 3 antibody fragments represent an attractive format for therapeutic applications (1, 2). scFvs are often derived from monoclonal antibodies isolated from animal or human lymphocytes. As an alternative to hybridoma screening, in vitro display technologies, e.g. phage and ribosome display, enable the selection of high affinity-binding variable domains from natural or synthetic genetic libraries. Despite the successful use of in vitro randomization and selection systems, generation of antibodies by immunization and subsequent screening of full-size antibodies (e.g. hybridoma supernatants) includes conceptual advantages. For example, in contrast to in vitro display systems, in vivo methods are less prone to preferential selection of well expressed clones, which in many cases results in loss of potentially interesting antibodies. Moreover, in vivo methods are preferred in particular for addressing complex antigens, such as integral membrane proteins that are notoriously difficult to purify. However, reducing a full-length monoclonal antibody to the scFv format frequently is challenging particularly due to solubility and stability problems, which often impair expression and purification. Therefore, technologies to humanize and stabilize the scFv format following isolation of a monoclonal antibody remain critical for the generation of scFv therapeutics. Numerous approaches have been describ...
Co-stimulatory 4–1BB receptors on tumor-infiltrating T cells are a compelling target for overcoming resistance to immune checkpoint inhibitors, but initial clinical studies of 4–1BB agonist mAbs were accompanied by liver toxicity. We sought to engineer a tri-specific antibody-based molecule that stimulates intratumoral 4–1BB and blocks PD-L1/PD-1 signaling without systemic toxicity and with clinically favorable pharmacokinetics. Recombinant fusion proteins were constructed using scMATCH3 technology and humanized antibody single-chain variable fragments against PD-L1, 4–1BB, and human serum albumin. Paratope affinities were optimized using single amino acid substitutions, leading to design of the drug candidate NM21-1480. Multiple in vitro experiments evaluated pharmacodynamic properties of NM21-1480, and syngeneic mouse tumor models assessed antitumor efficacy and safety of murine analogues. A GLP multiple-dose toxicology study evaluated its safety in non-human primates. NM21-1480 inhibited PD-L1/PD-1 signaling with a potency similar to avelumab, and it potently stimulated 4–1BB signaling only in the presence of PD-L1, while exhibiting an EC 50 that was largely independent of PD-L1 density. NM21-1480 exhibited high efficacy for co-activation of pre-stimulated T cells and dendritic cells. In xenograft models in syngeneic mice, NM21-1480 induced tumor regression and tumor infiltration of T cells without causing systemic T-cell activation. A GLP toxicology study revealed no evidence of liver toxicity at doses up to 140 mg/kg, and pharmacokinetic studies in non-human primates suggested a plasma half-life in humans of up to 2 weeks. NM21-1480 has the potential to overcome checkpoint resistance by co-activating tumor-infiltrating lymphocytes without liver toxicity.
Receptor tyrosine kinases (RTKs) play an important role in the control of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulated RTK signaling is critically involved in the development and progression of human cancer. Here, we present an assay for monitoring RTK activities in yeast, which provides an ideal heterologous cellular system to study these mammalian proteins in a null background environment. With our system, we have reconstituted aspects of the epidermal growth factor receptor (EGFR) signaling pathway as a model. Our approach is based on the Ras-recruitment system, in which membrane localization of a constitutively active human Ras achieved through protein-protein interactions can rescue growth of a temperature-sensitive yeast strain (cdc25-2). We show that co-expression of a dimerizing membrane-bound EGFR variant with specific adaptor proteins fused to the active Ras rescues growth of the cdc25-2 mutant yeast strain at the nonpermissive temperature. Using kinase-defective RTK mutants and selective EGFR kinase inhibitors, we demonstrate that growth rate of this yeast strain correlates with kinase activity of the EGFR derivatives. The RTK cellular assay presented here can be applied in high-throughput screens for selecting RTK-specific inhibitors that must be able to permeate the membrane and to function in an eukaryotic intrecellular environment.
The reverse two-hybrid system has been developed to readily identify molecules or mutations that can disrupt protein-protein interactions in vivo. This system is generally based on the interaction-dependent activation of a reporter gene, whose product inhibits the growth of the engineered yeast cell. Thus, disruption of the interaction between the hybrid proteins can be positively selected because, by reducing the expression of the negative marker gene, it allows cell growth. Although several counter-selectable marker genes are currently available, their application in the reverse two-hybrid system is generally confronted with technical and practical problems such as low selectivity and relatively complex experimental procedures. Thus, the characterization of more reliable and simple counter-selection assays for the reverse two-hybrid system continues to be of interest. We have developed a novel counter-selection assay based on the toxicity of intracellular galactose-1-phosphate, which accumulates upon expression of a galactokinase-encoding GAL1 reporter gene in the absence of transferase activity. Decreased GAL1 gene expression upon dissociation of interacting proteins causes reduction of intracellular galactose-1-phosphate concentrations, thus allowing cell growth under selective conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.