Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.
Explosions and fire have very critical safety hazard impacts on offshore oil and gas facilities since they are mostly located in remote areas and could induce serious environmental issues. Explosion risk assessment and structure blast analysis are essential for these production facilities, and research studies have been carried out. Explosion due to blowout during drilling operation is also a critical risk for drilling units, and this has not been researched much until the accident of the drilling unit in the Gulf of Mexico in 2010. This paper provides the risk and evaluation of explosion and structure under blast pressure during the drilling operation, whereas previous research studies have mainly been interested in process plants. This study suggests weight saving in drilling units through the consideration of the actual behavior of gas explosion. Weight saving is the priority of offshore unit design due to payload. This research also gives guidelines to select the material-grade-appropriate anti-explosion system through the comparison of several materials by design and result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.