Endocytic processes are critical for cellular entry of several viruses; however, the role of endocytosis in cellular trafficking of viruses beyond virus entry is only partially understood. Here, we utilized two laboratory strains (AD169 and Towne) of human cytomegalovirus (HCMV), which are known to use cell membrane fusion rather than endocytosis to enter fibroblasts, in order to study a post-entry role of endocytosis in HCMV life cycle. Upon pharmacological inhibition of dynamin-2 or clathrin terminal domain (TD) ligand association, these strains entered the cells successfully based on the expression of immediate early viral protein. However, both the inhibitors significantly reduced the growth rates and final virus yields of viruses without inhibiting the expression of early to late viral proteins. Clathrin accumulated in the cytoplasmic virus assembly compartment (vAC) of infected cells co-localizing with virus tegument protein pp150 and the formation of vAC was compromised upon endocytic inhibition. Transmission electron micrographs (TEM) of infected cells treated with endocytosis inhibitors showed intact nuclear stages of nucleocapsid assembly but the cytoplasmic virus maturation was greatly compromised. Thus, the data presented here implicate endocytic pathways in HCMV maturation and egress.
Amyloid appearance is a rare event that is promoted in the presence of other aggregated proteins. These aggregates were thought to act by templating the formation of an assembly-competent nucleation seed, but we find an unanticipated role for them in enhancing the persistence of amyloid after it arises. Specifically, Saccharoymyces cerevisiae Rnq1 amyloid reduces chaperone-mediated disassembly of Sup35 amyloid, promoting its persistence in yeast. Mathematical modeling and corresponding in vivo experiments link amyloid persistence to the conformationally defined size of the Sup35 nucleation seed and suggest that amyloid is actively cleared by disassembly below this threshold to suppress appearance of the [ PSI + ] prion in vivo . Remarkably, this framework resolves multiple known inconsistencies in the appearance and curing of yeast prions. Thus, our observations establish the size of the nucleation seed as a previously unappreciated characteristic of prion variants that is key to understanding transitions between prion states.
Tegument proteins pp150 and pUL96 function at a late step in cytomegalovirus (CMV) maturation. Here, we show that pp150 interacts directly with pUL96; however, the N-terminal region of pp150 and the C-terminal region of pUL96, which are critical for these proteins to function, are not required for this interaction. Moreover, the largely dispensable C-terminal region of pp150 is critical for pp150-pUL96 interaction. To further study the role of pUL96, several point and clustered mutations were engineered into the CMV Towne bacterial artificial chromosome (Towne-BAC) genome, replacing the conserved negatively charged C-terminal residues of pUL96. Although individual point mutations (E 122 A, D 124 A, and D 125 A) reduced virus growth slightly, the clustered mutations of 122 EVDDAV 127 significantly reduced virus growth, produced small syncytial plaque phenotypes, and impacted a late stage of virus maturation. When the UL96 C-terminal alanine conversion mutant (B6-BAC) virus was serially passaged in cell culture, it gained a plaque size comparable to that of Towne-BAC, displayed an altered restriction fragment length pattern, and replicated with increased growth kinetics. Whole-genome sequencing of this passaged virus (UL96P10) and the similarly passaged Towne-BAC virus revealed major differences only in the RNA4.9 and UL96 regions. When one of the mutations in the UL96 coding region was engineered into the B6-BAC virus, it significantly increased the plaque size and rescued the virus growth rate. Thus, accumulation of compensatory mutations only in UL96 in this revertant and the specific involvement of functionally dispensable regions of pp150 in the pUL96-pp150 interaction point toward a role for pUL96 in virus maturation that does not depend upon pp150. IMPORTANCEHuman cytomegalovirus causes significant medical problems in newborns, as well as in people with low immunity. In this study, we investigated the functions of two essential virus proteins, pp150 and pUL96, and determined the impact of their mutual interaction on virus replication. These studies provide valuable information that is critical for the development of targeted antiviral therapies. The proteinaceous layer between the capsid and the envelope in a herpesvirus virion, known as the tegument, is analogous to the matrix layer found in some RNA viruses. Tegument proteins function in at least four different ways; they (i) are delivered into host cells upon virus entry as prepackaged transactivation factors that can promote infection, e.g., cytomegalovirus (CMV) pp71 (1, 2); (ii) are critical for the acquisition of the virus envelope and act as a bridge between the nucleocapsids and the envelope layer (3, 4); (iii) provide capsid stability during virus maturation and trafficking, e.g., CMV pp150 and pUL96 (5, 6); and (iv) help in the trafficking of virus in the cell by engaging the host cytoskeleton, e.g., herpes simplex virus (HSV) UL36 (7-9). Herpesvirus tegument has been thought to be amorphous in nature (3, 4, 10), although a more ordered s...
Here, we present the complete genome sequence of a cytomegalovirus, the Towne-BAC (bacterial artificial chromosome) isolate, which was maintained in bacterial cells for 10 years and then serially passaged in human fibroblasts for 10 passages. A total of 132 nucleotide differences were discovered in the Towne sequence compared to the reference sequence (GenBank accession no. AC146851).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.