Single-amino-acid mutations in Sindbis virus proteins can convert clinically silent encephalitis into uniformly lethal disease. However, little is known about the host gene response during avirulent and virulent central nervous system (CNS) infections. To identify candidate host genes that modulate alphavirus neurovirulence, we utilized GeneChip Expression analysis to compare CNS gene expression in mice infected with two strains of Sindbis virus that differ by one amino acid in the E2 envelope glycoprotein. Infection with Sindbis virus, dsTE12H (E2-55 HIS), resulted in 100% mortality in 10-day-old mice, whereas no disease was observed in mice infected with dsTE12Q (E2-55 GLN). dsTE12H, compared with dsTE12Q, replicated to higher titers in mouse brain and induced more CNS apoptosis. Infection with the neurovirulent dsTE12H strain was associated with both a greater number of host genes with increased expression and greater changes in levels of host gene expression than was infection with the nonvirulent dsTE12Q strain. In particular, dsTE12H infection resulted in greater increases in the levels of mRNAs encoding chemokines, proteins involved in antigen presentation and protein degradation, complement proteins, interferon-regulated proteins, and mitochondrial proteins. At least some of these increases may be beneficial for the host, as evidenced by the demonstration that enforced expression of the antiapoptotic mitochondrial protein peripheral benzodiazepine receptor (PBR) protects neonatal mice against lethal Sindbis virus infection. Thus, our findings identify specific host genes that may play a role in the host protective or pathologic response to neurovirulent Sindbis virus infection.
To identify new and differentially expressed genes in rat fetal liver epithelial stem/progenitor cells during their proliferation, lineage commitment, and differentiation, we used a high throughput method-mouse complementary DNA (cDNA) microarrays-for analysis of gene expression. The gene expression pattern of rat hepatic cells was studied during their differentiation in vivo: from embryonic day (ED) 13 until adulthood. The differentially regulated genes were grouped into two clusters: a cluster of up-regulated genes comprised of 281 clones and a cluster of down-regulated genes comprised of 230 members. The expression of the latter increased abruptly between ED 16 and ED 17. Many of the overexpressed genes from the first cluster fall into distinct, differentially expressed functional groups: genes related to development, morphogenesis, and differentiation; calcium-and phospholipid-binding proteins and signal transducers; and cell adhesion, migration, and matrix proteins. Several other functional groups of genes that are initially down-regulated, then increase during development, also emerged: genes related to inflammation, blood coagulation, detoxification, serum proteins, amino acids, lipids, and carbohydrate metabolism. Twenty-eight genes overexpressed in fetal liver that were not detected in adult liver are suggested as potential markers for identification of liver progenitor cells. In conclusion, our data show that the gene expression program of fetal hepatoblasts differs profoundly from that of adult hepatocytes and that it is regulated in a specific manner with a major switch at ED O ver the years, substantial evidence has accumulated suggesting the existence of potential liver stem cells (LSCs) in the adult liver. This evidence is indirect, because in all reports the putative LSCs were activated to proliferate and differentiate into liver progenitor cells only when the regenerative capacity of terminally differentiated hepatocytes was compromised. 1-3 Because these cells are not under constant renewal-in contrast to epithelial cells of the intestine or the skin-they escape detection in the quiescent liver. For this reason, a unique specific marker for LSCs in adult liver has not yet been identified, and the LSCs have not yet been isolated.To study liver stem/progenitor cells (LS/PCs), we took a different approach. We began to analyze the gene expression profile of hepatic cells in fetal liver. Around embryonic day (ED) 8.5 in the mouse and 1 day later in the rat, primitive epithelial cells of the ventral foregut come in contact with cardiac mesoderm and fibroblast growth factor signaling, leading to formation of the hepatic diverticulum. 4-6 Subsequently, cells of the primary liver diverticulum invade the septum transversum and, under the inductive signals of bone morphogenic proteins, proliferate extensively and differentiate further. 6 These cells are considered committed hepatic epithelial cells and have been termed hepatoblasts. [4][5][6] Some of these cells are at a very early stage of their differen...
The development of microarray technology has revolutionized RNA and deoxyribonucleic acid (DNA) research. In contrast with traditional biological assays, microarrays allow the simultaneous measurement of tens of thousands of messenger RNA (mRNA) transcripts for gene expression or of genomic DNA fragments for copy number variation analysis. Over the past decade, genome-wide RNA or DNA microarray analysis has become an essential component of biology and biomedical research. The successful use of microarrays requires attention to unique issues of experimental design and execution. This chapter provides an overview of the methodology and applications of RNA and DNA microarrays in various areas of biological research.
The prefrontal cortex has been implicated in schizophrenia (SZ) and affective disorders by gene expression studies. Owing to reciprocal connectivity, the thalamic nuclei and their cortical fields act as functional units. Altered thalamic gene expression would be expected to occur in association with cortical dysfunction. We screened the expression of the entire human genome of neurons harvested by laser-capture microdissection (LCM) from the thalamic primary relay to dorsolateral prefrontal cortex in three psychiatric disease states as compared with controls. Microarray analysis of gene expression showed the largest number of dysregulated genes was in SZ, followed by major depression (MD) and bipolar mood bipolar (BP) (1152, 385 and 288, respectively). Significantly, IGF1-mTOR-, AKT-, RAS-, VEGF-, Wnt-and immune-related signaling, eIF2-and proteasome-related genes were unique to SZ. Vitamin D receptor and calcium signaling pathway were unique to BP. AKAP95 pathway and pantothenate and CoA biosynthesis were unique to MD. There are significant differences among the three psychiatric disorders in MDNp cells. These findings offer new insights into the transcriptional dysregulation in the thalamus of SZ/BP/MD subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.