Background Anopheles arabiensis, member species of the Anopheles gambiae complex, is the primary vector of malaria and is widely distributed in Ethiopia. Anopheles funestus, Anopheles pharoensis and Anopheles nili are secondary vectors occurring with limited distribution in the country. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are pillars for the interventions against malaria control and elimination efforts in Ethiopia. However, the emergence and widespread of insecticide resistance in An. gambiae sensu lato (s.l.), might compromise the control efforts of the country. The aim of this study was to investigate composition of mosquito fauna and insecticide resistance status of An. gambiae s.l. in Itang special district ( woreda), Gambella, southwestern Ethiopia. Methods Adult mosquitoes were sampled from September 2020 to February 2021 using the CDC light trap and pyrethrum spray catch (PSC). CDC light traps were placed in three selected houses for two consecutive days per month to collect mosquitoes indoor and outdoor from 6:00 P.M. to 06:00 A.M. and PSC was used to collect indoor resting mosquitoes from ten selected houses once in a month from October 2020 to February 2021. Moreover, mosquito larvae were also collected from different breeding sites and reared to adults to assess susceptibility status of populations of An. gambiae s.l. in the study area. Susceptibility tests were conducted on two to three days old non blood fed female An. gambiae s.l. using insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) following World Health Organization (WHO) standard susceptibility test procedure. Molecular diagnostics were done for the identification of member species of An. gambiae s.l. and detection of knockdown resistance (kdr) allele using species specific polymerase chain reaction (PCR) and allele specific PCR. Results In total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles (Anopheles coustani, An. pharoensis, and An. gambiae s.l.) were identified, of which An. coustani was the dominant (8.1%) species. Higher number of mosquitoes (231) were collected outdoor by CDC light traps. Out of 468 adult mosquitoes, 294 were blood fed, 46 were half-gravid and gravid whereas the remaining 128 were unfed. WHO bioassay tests revealed that the populations of An. gambiae s.l. in the study area are resistant against alpha-cypermethrin and deltamethrin, but susceptible to bendiocarb, pirimiphos-methyl and propoxur. Of the total 86 An. gambiae s.l. specimens assayed, 79 (92%) successfully amplified and identified as An. arabiensis. West African kdr (L1014F) mutation was detected with high kdr allele frequency ranging from 67 to 88%. Conclusion The detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.
Introduction: Anopheles arabiensis, member species of the Anopheles gambiae complex, is the primary vector of malaria widely distributed in Ethiopia. Anopheles funestus, An. pharoensis and An. nili are secondary vectors occurring with limited distribution in the country. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are pillars for the interventions against malaria control and elimination efforts in Ethiopia. However, the emergence and widespread of insecticide resistance in the major malaria vector, An. arabiensis, might compromise the efforts of the country. The aim of this study was to investigate composition of mosquito species and insecticide resistance status of An. arabiensis in Itang special woreda (district), Gambella, southwestern Ethiopia.Materials and methods: Adult mosquitoes were sampled from September 2020 to Feburary 2021 using Centers for Disease Control and Prevention (CDC) light trap and Pyrethrum Spray Catch (PSC). Moreover, mosquito larvae were also collected from different breeding sites and reared to adults to assess susceptibility status of populations of An. gambiae s.l. in the study area. Susceptibility tests were conducted on two to three days old non blood fed female An. gambiae s.l using insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) following World Health Organization (WHO) standard susceptibility test procedure. Molecular diagnostics were done for the identification of member species of An. gambiae s.l and detection of knockdown resistance (kdr) allele using species specific polymerase chain reaction (PCR) and allele specific PCR. Results: In total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles mosquitoes (An. coustani, An. pharoensis, and An. gambiae (s.l.)) were identified, of which An. coustani was the dominant (8.1%) species. WHO bioassay tests revealed that the populations of An. gambiae s.l in the study area are resistant against alpha-cypermethrin and deltamethrin whereas, susceptible to bendiocarb, pirimiphos-methyl and propoxur. Out of the total 86 An. gambiae s.l specimens assayed, 79 (92%) successfully amplified and identified as An. arabiensis. West African Kdr (L1014F) mutation was detected with high Kdr allele frequency ranging from 67-88%.Conclusion: The detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.
IntroductionMalaria is a leading cause of morbidity and mortality mainly in sub-Saharan African countries. Plasmodium falciparum and P. vivax are the dominant malaria parasites responsible for the majority of malaria cases in Africa. The aim of this study was to investigate composition of mosquito fauna and insecticide resistance status of Anopheles mosquito in Itang special woreda (district), Gambella, southwestern Ethiopia.Materials and methodsAdult mosquitoes were sampled from September 2020 to Feburary 2021 using Centers for Disease Control and Prevention (CDC) light trap and Pyrethrum Spray Catch (PSC). Moreover, mosquito larvae were collected from different breeding sites and reared to adults. Susceptibility tests were conducted on adult two to three days old non blood fed female Anopheles gambiae s.l following world health organization (WHO) standard susceptibility test procedure. Insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) were used to assess susceptibility status of Anopheles gambiae s.l populations in the study area. Moreover, molecular diagnostics were done for the identification of member species of Anopheles gambiae s.l and detection of knockdown resistance (kdr) using species specific polymerase chain reaction (PCR) and allele specific PCR.ResultsIn total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles mosquitoes (An. coustani, An. pharoensis, and An. gambiae (s.l.)) were identified, of which An. coustani was the dominant (8.1%) species. Out of 468 adult mosquitoes, 294 were blood fed while 46 were half-gravid and gravid. The WHO bioassay tests revealed that the populations of An. gambiae s.l in the study area are resistant against alpha-cypermethrin and deltamethrin whereas, susceptible to bendiocarb, pirimiphos-methyl and propoxur. Out of the total 86 An. gambiae s.l specimens assayed, 79 (92%) successfully amplified and all were identified as An. arabiensis. West African Kdr (L1014F) mutation was detected with high Kdr allele frequency ranging from 67–88%.ConclusionThe detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.