Iodine-methanol mediated oxidative-aromatization of 2-aryl-6,8-dibromo-2,3-dihydroquinolin-4(1H)-ones afforded the corresponding 2-aryl-6,8-dibromo-4-methoxy-quinolines in high yield and purity. The isomeric 1-(2-amino-3,5-dibromophenyl)-3-aryl-2-propen-1-ones reacted with iodine in methanol afford in a single pot operation the corresponding 2-aryl-6,8-dibromo-4-methoxyquinoline (major) and 2-aryl-6,8-dibromoquinolin-4(1H)-one (minor) products that were separated in sequence by column chromatography on silica gel. Suzuki-Miyaura cross-coupling of the 6,8-dibromo-4-methoxyquinoline derivatives with excess arylvinylboronic acids afforded the corresponding 2-aryl-6,8-bis(2-arylethenyl)-4-methoxyquinolines. The absorption and fluorescence properties of these compounds were also determined.
ABSTRACT. Direct bromination of 2-aminobenzamide was achieved using N-bromosuccinimide in chloroform-carbon tetrachloride mixture at room temperature for 3 h to afford 2-amino-3,5-dibromobenzamide in high yield and purity. 2-Amino-3,5-dibromobenzamide was, in turn, condensed with benzaldehyde derivatives in the presence of boric acid to afford novel 2-aryl-6,8-dibromo-2,3-dihydroquinazolin-4(1H)-ones. Suzuki-Miyaura cross-coupling of the latter with arylboronic acids yielded the corresponding 2,6,8-triaryl-2,3-dihydroquinazolin-4(1H)-ones. These triarylquinazolin-4(1H)-ones were dehydrogenated using iodine (2 equiv.) in ethanol under reflux to yield the potentially tautomeric 2,6,8-triarylquinazolin-4(3H)-ones.
Herein we describe the synthesis and evaluation of a series of novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones for in vitro cytotoxicity against three human cancer cell lines as well as for potential antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The title compounds were prepared via PdCl2-mediated endo-dig cyclization of 2-aryl-8-(arylethynyl)-6-bromo-2,3-dihydroquinazolin-4(1H)-ones. The latter were prepared, in turn, via initial Sonogashira cross-coupling of 2-amino-5-bromo-3-iodobenzamide with aryl acetylenes followed by boric acid-mediated cyclocondensation of the intermediate 2-amino-3-(arylethynyl)-5-bromobenzamides with benzaldehyde derivatives. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4a–k were evaluated for potential in vitro cytotoxicity against the breast (MCF-7), melanoma (B16) and endothelioma (sEnd.2) cell lines. All of the compounds except 4h and 4i were found to be inactive against the three cancer cell lines. Compound 4h substituted with a 4-methoxyphenyl and 4-fluorophenyl groups at the 3- and 5-positions was found to exhibit significant cytotoxicity against the three cancer cell lines. The presence of phenyl and 3-chlorophenyl groups at the 3- and 5-posiitons of the pyrroloquinazolinone 4i, on the other hand, resulted in significant cytotoxicity against vascular tumour endothelial cells (sEnd.2), but reduced activity against the melanoma (B16) and breast cancer (MCF-7) cells except at higher concentrations. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4a–l were found to be inactive against the chloroquine sensitive 3D7 strain of Plasmodium falciparum.
Amination of the 2-aryl-6-bromo-4-chloro-8-iodoquinazolines with 2-aminoethanol followed by acid-promoted cyclodehydration of the incipient 2-((6,8-dihalo-2-phenylquinazolin-4-yl)amino)ethanols afforded the corresponding novel 5-aryl-9-bromo-7-iodo-2,3-dihydro-2H-imidazo[1,2-c]quinazolines. The latter were, in turn, subjected to sequential (Sonogashira and Suzuki-Miyaura) and one-pot two-step (Sonogashira/Stille) cross-coupling reactions to afford diversely functionalized polycarbo-substituted 2H-imidazo[1,2-c]quinazolines. The imidazoquinazolines were screened for in vitro cytotoxicity against human breast adenocarcinoma (MCF-7) cells and human cervical cancer (HeLa) cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.