This study was conducted in a laboratory-controlled environment to analyse the physical properties and elemental composition of coal combustion particles in a brazier. Particles were sampled ~1 m above the stove, using a partector. Particles were collected on gold transmission electron microscopy (TEM) grids, and polycarbonate filters for TEM and inductively coupled plasma mass spectrometry (ICP-MS) analysis, respectively. Particles for elemental analysis were collected on a 37 µm polycarbonate filter, and the exhaust was drawn in using a GilAir Plus pump. During sampling, a 2.5 µm cyclone was attached to the sampling cassette to isolate larger particles. Combustion particles emitted during the early stage of combustion were single organic spherical particles with similar characteristics to tarballs. As the combustion progressed, the particle diameter gradually decreased (from 109 nm), and the morphology changed to smaller particles (to 34.3 nm). The particles formed accretion chain structures, showing evidence of agglomeration. Furthermore, a fluffy microstructure, resembling the formation of soot, was formed in the post flaming phase. In the char-burning phase, an irregular structure of semi-spherical particles was formed, showing evidence of mineral particles infused with small carbonaceous particles. Similarly, with the findings of previous studies, the present research also observed organic spherical particles similar to tarballs. Given that during the ignition phase there was a simultaneous burning of wood as kindling and coal, the provenance of these particle emissions can be attributed to both coal and wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.