Understanding the genetic variability, heritability and genetic advance of traits in any plant population is an important prerequisite for breeding program. The experiment was conducted to assess the magnitude of genetic variability, heritability and genetic advance of 24 maize inbred lines for 16 quantitative traits. The field experiment was conducted during 2016 cropping season at Jimma Agricultural Research Center (JARC). Alpha lattice (0, 1) design with three replications and nine blocks was used. Analysis of variance showed high significance (P<0.01) differences among genotypes for all traits studied except tassel size. The genotypic coefficient of variation (GCV) for all traits studied was smaller than the phenotypic coefficient of variation (PCV), indicating the significant role of environment in the expression of traits studied. The estimates of PCV and GCV was high for grain yield, thousand kernel weight, ear height, ear diameter, anthesis and silking interval and plant aspect. Heritability estimates ranged from 9.15 for tassel size to 96.02 for thousand kernel weight. Estimates of genetic advance as percent of mean at 5% selection intensity ranged from 2.76% for days to maturity to 50.69% for grain yield. High heritability along with high genetic advance was obtained for plant height, ear length and 1000-kernel weight, indicating the predominance of additive gene effects in controlling the traits and effective selection on the basis of these traits would be absolutely useful for the improvement of inbred lines. Therefore, it could be recommended that due emphasis should be given for these traits for the improvement of maize inbred lines.
Moisture stress is one of the major constraints for crop production in African Sahel. Here, we explore the potential to use natural genetic variation to build on the inherent drought tolerance of an elite sorghum cultivar (Teshale) bred for Ethiopian conditions including chronic drought, evaluating a backcross nested-association mapping population using 12 diverse founder lines crossed with Teshale under three drought-prone environments in Ethiopia. All twelve populations averaged higher head exsertion and lower leaf senescence than the recurrent parent in the two highest-stress environments, reflecting new drought resilience mechanisms from the donors. 154 QTLs were detected for eight drought responsive traits – the validity of these were supported in that 113 (73.4%) overlapped with QTLs previously detected for the same traits, concentrated in regions previously associated with ‘stay-green’ traits. Allele effects show that some favorable alleles are already present in the Ethiopian cultivar, however the exotic donors offer rich scope for increasing drought resilience. Using model-selected SNPs associated with eight traits in this study and three in a companion study, phenotypic prediction accuracies for grain yield were equivalent to genome-wide SNPs and were significantly better than random SNPs, indicating that these studied traits are predictive of sorghum grain yield.
Climate–change–associated shifts in rainfall distribution together with a looming worldwide water crisis make drought resilience of central importance to food security. Even for relatively drought resilient crops such as sorghum, moisture stress is nonetheless one of the major constraints for production. Here, we explore the potential to use natural genetic variation to build on the inherent drought tolerance of an elite cultivar (Teshale) bred for Ethiopian conditions including chronic drought, evaluating a backcross nested-association mapping (BC–NAM) population using 12 diverse founder lines crossed with Teshale under three drought-prone environments in Ethiopia. All twelve populations averaged higher head exsertion and lower leaf senescence than the recurrent parent in the two highest-stress environments, reflecting new drought resilience mechanisms from the donors. A total of 154 QTLs were detected for eight drought responsive traits – the validity of these were supported in that 100 (64.9%) overlapped with QTLs previously detected for the same traits, concentrated in regions previously associated with ′stay-green′ traits as well as the flowering regulator Ma6 and drought resistant gene P5CS2. Allele effects show that some favorable alleles are already present in the Ethiopian cultivar, however the exotic donors offer rich scope for increasing drought resilience. Using model-selected SNPs associated with eight traits in this study and three in a companion study, phenotypic prediction accuracies for grain yield were equivalent to genome-wide SNPs and were significantly better than random SNPs, indicating that these studied traits are predictive of sorghum grain yield. Rich scope for improving drought resilience even in cultivars bred for drought–prone regions, together with phenotypic prediction accuracy for grain yield, provides a foundation to enhance food security in drought-prone areas like the African Sahel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.