Background Hyperpolarized 129Xe is a promising contrast agent for MRI of pediatric lung function but its safety and tolerability in children have not been rigorously assessed. Objective To assess the feasibility, safety and tolerability of hyperpolarized 129Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Materials and methods Seventeen healthy control subjects (ages 6–15 years, 11 boys) and 11 children with cystic fibrosis (ages 8–16 years, 4 boys) underwent 129Xe MRI, receiving up to three doses of 129Xe gas prepared by either a commercially available or a homebuilt 129Xe polarizer. Subject heart rate and SpO2 were monitored for 2 minutes post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. Results All children tolerated multiple doses of 129Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO2 (mean −6.0 ± standard deviation 7.2%, P≤0.001); however within 2 minutes post inhalation SpO2 values showed no significant difference to baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned to baseline within 2 minutes post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129Xe MRI, but all were deemed unrelated to the study. Conclusion The feasibility, safety and tolerability of 129Xe MRI has been assessed in a small group of children as young as 6 years. SpO2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129Xe MRI in adults. Hyperpolarized 129Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.
In open surgical procedures, image-ablate ultrasound arrays performed thermal ablation and imaging on rabbit liver lobes with implanted VX2 tumor. Treatments included unfocused (bulk ultrasound ablation, N = 10) and focused (high-intensity focused ultrasound ablation, N = 13) exposure conditions. Echo decorrelation and integrated backscatter images were formed from pulse-echo data recorded during rest periods after each therapy pulse. Echo decorrelation images were corrected for artifacts using decorrelation measured prior to ablation. Ablation prediction performance was assessed using receiver operating characteristic curves. Results revealed significantly increased echo decorrelation and integrated backscatter in both ablated liver and ablated tumor relative to unablated tissue, with larger differences observed in liver than in tumor. For receiver operating characteristic curves computed from all ablation exposures, both echo decorrelation and integrated backscatter predicted liver and tumor ablation with statistically significant success, and echo decorrelation was significantly better as a predictor of liver ablation. These results indicate echo decorrelation imaging is a successful predictor of local thermal ablation in both normal liver and tumor tissue, with potential for real-time therapy monitoring.
Fast apparent transverse relaxation (short T 2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T 2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T 2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T 2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T 2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T 1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T 2 * in vivo for 10 healthy C57Bl/6 J mice and found T 2 *~5 ms in the lung airspaces. Interestingly, T 2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O 2 content of the inhaled gas mixture. These results are discussed in the context of T 2 * relaxation within porous media. K E Y W O R D S129
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.