Two novel Arabidopsis phytochrome genes, PHYD and PHYE, are described and evidence is presented that, together with the previously described PHYA, PHYB and PHYC genes, the primary structures of the complete phytochrome family of this plant are now known. The PHYD- and PHYE-encoded proteins are of similar size to the other phytochrome apoproteins and show sequence similarity along their entire lengths. Hence, red/far-red light sensing in higher plants is mediated by a diverse but structurally conserved group of soluble photoreceptors. The proteins encoded by the PHYD and PHYE genes are more closely related to phytochrome B than to phytochromes A or C, indicating that the evolution of the PHY gene family in Arabidopsis includes an expansion of a PHYB-related subgroup. The PHYB and PHYD phytochromes show greater than 80% amino acid sequence identity but the phenotypes of phyB null mutants demonstrate that these receptor forms are not functionally redundant. The five PHY mRNAs are, in general, expressed constitutively under varying light conditions, in different plant organs, and over the life cycle of the plant. These observations provide the first description of the structure and expression of a complete phytochrome family in a higher plant.
Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling ofPHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.
The PHYD gene of the Wassilewskija (Ws) ecotype of Arabidopsis contains a 14-bp deletion (the phyD-1 mutation) beginning at amino acid 29 of the reading frame, resulting in translation termination at a nonsense codon 138 nucleotides downstream of the deletion end point. Immunoblot analyses showed that Ws lacks phyD but contains normal levels of phyA, phyB, and phyC. By backcrossing into the Ws and Landsberg erecta genetic backgrounds, we constructed sibling pairs of PHYD+ and phyD-1 lines and of phyB- PHYD+ and phyB- phyD- lines. Hypocotyl lengths after growth under white or red light increased sequentially in strains that were B+D+, B+D-, B-D+, and B-D-. In the Ws genetic background, an increase in petiole length, a reduction in cotyledon area and in anthocyanin accumulation in seedling stems, a diminished effect of an end-of-day pulse of far-red light on hypocotyl elongation, and a decrease in the number of rosette leaves at the onset of flowering were also seen sequentially in these lines. Thus, phyD, which is approximately 80% identical in amino acid sequence to phyB, acts in conjunction with phyB in regulating many shade avoidance responses. The existence of the apparently naturally occurring phyD-1 mutation indicates that phyD is not essential in some natural environments.
Phytochromes are dimeric chromoproteins that regulate plant responses to red (R) and far-red (FR) light. The Arabidopsis thaliana genome encodes five phytochrome apoproteins: type I phyA mediates responses to FR, and type II phyB-phyE mediate shade avoidance and classical R/FR-reversible responses. In this study, we describe the complete in vivo complement of homodimeric and heterodimeric type II phytochromes. Unexpectedly, phyC and phyE do not homodimerize and are present in seedlings only as heterodimers with phyB and phyD. Roles in light regulation of hypocotyl length, leaf area, and flowering time are demonstrated for heterodimeric phytochromes containing phyC or phyE. Heterodimers of phyC and chromophoreless phyB are inactive, indicating that phyC subunits require spectrally intact dimer partners to be active themselves. Consistent with the obligate heterodimerization of phyC and phyE, phyC is made unstable by removal of its phyB binding partner, and overexpression of phyE results in accumulation of phyE monomers. Following a pulse of red light, phyA, phyB, phyC, and phyD interact in vivo with the PHYTOCHROME INTERACTING FACTOR3 basic helix-loop-helix transcription factor, and this interaction is FR reversible. Therefore, most or all of the type I and type II phytochromes, including heterodimeric forms, appear to function through PIF-mediated pathways. These findings link an unanticipated diversity of plant R/FR photoreceptor structures to established phytochrome signaling mechanisms.
Coimmunoprecipitation of members of the phytochrome red͞far-red photoreceptor family from plant extracts has been used to analyze their heteromeric binding interactions. Phytochrome (phy)B or phyD apoproteins with six myc epitopes fused to their N termini are biologically active when expressed in Arabidopsis. Immunoprecipitation of either of these tagged proteins from seedling extracts coprecipitates additional type II phytochromes: six myc (myc6)-phyB coprecipitates phyC-phyE; and myc 6 -phyD coprecipitates phyB and phyE. No interaction of the epitopetagged proteins with type I phyA was detected. Gel filtration chromatography shows that all five of the Arabidopsis phytochromes are present in seedlings as dimers, and that the heteromeric type II phytochrome complexes migrate at molecular masses characteristic of heterodimers. Similar levels of heterodimer formation are observed in extracts of dark-grown seedlings, where the phytochromes are cytosolic, and light-grown seedlings, where they are predominantly nuclear. These findings indicate that Arabidopsis, which until now has been thought to contain five homodimeric forms of phytochrome, in fact contains multiple species of both homodimeric and heterodimeric phytochromes. The conservation of the phytochrome family throughout angiosperms suggests that heterodimeric red͞far-red receptors may be present in many flowering plants. Phytochromes are soluble chromoprotein photoreceptors that mediate plant responses to red (R) and far-red (FR) light. The light-sensing and biological regulatory activities of phytochromes derive from their photochemical interconversion between a R-absorbing conformation (Pr) and a FR-absorbing conformation (Pfr). Absorption of photons of R converts Pr to Pfr, and absorption of photons of FR converts Pfr back to Pr. For most R͞FR plant responses, the Pr form is inactive and the Pfr form is active, so that either the concentration of Pfr or the ratio of Pfr to total phytochrome correlates with the strength of the response. Phytochrome in the Pr conformation is localized to the cytosol, and photoconversion to Pfr results in translocation of the photoreceptor to the nucleus (1, 2). Several candidate phytochrome-interacting proteins have been identified, including the nuclear DNA-binding protein PIF3, the CRY2 blue-light photoreceptor, and the F-box-containing ZTL protein (3, 4). These findings suggest that phytochromes may be directly positioned at light-response gene promoters, and that they may also be directly involved in integrating signaling input from other receptor systems and the circadian clock.Five genes encoding 120-to 130-kDa phytochrome apoproteins are present in the Arabidopsis genome, PHYA-PHYE (5, 6). Mutations in all five of these genes have been identified, and effects of loss of function for each phytochrome form on plant development and light response have been described (7-11). In addition, the levels of each of the phytochrome A-E holoproteins (phyA-phyE) and their light stabilities have been determined (12). Four of the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.