The subarctic location of Enbridge’s Norman Wells pipeline provides unique conditions affecting both construction and operations. These include the huge variations in annual air temperature, permanently frozen ground (permafrost), hundreds of river crossings and potential slope instability. The regulatory authorities recognized this environmental sensitivity and stringent conditions for construction and operation were applied. In this difficult environment, loss of integrity must be detected rapidly and at low thresholds. To ensure that integrity monitoring maintains or improves these thresholds, frequent testing is necessary. Testing of the integrity of this remote northern oil pipeline provides significant operational challenges. This remote 869km (540 mile) NPS12 crude oil pipeline has been operating in the Canadian subarctic since 1985. This paper will outline the implementation, assessment and future directions of the integrity monitoring testing of the pipeline’s leak detection capability. The history of this pipeline in the Canadian Northwest Territories will be outlined with emphasis on the special regulatory issues of this sensitive sub arctic environment. The development of a Computational Pipeline Modeling (CPM) leak detection system to meet these regulations will be summarized with reference to the guidelines of CSA Z662, Appendix E. A central component of meeting this regulatory requirement is an annual test program that uses controlled fluid withdrawal to test the CPM system and operational responses. The special methods and procedures used to meet the challenges of this program will be noted. The extent and frequency of testing make this probably one of the most tested liquid pipeline leak detection systems in the world. These controlled fluid withdrawal tests are used to enhance the Enbridge response to operational emergencies. Many factors must be considered when designing these tests. A detailed description of the preparation and field logistics required for the pipeline CPM test will be presented. The special needs of conducting tests in an environmentally sensitive region will also be outlined. A review of how these tests address the considerations of API 1149 and API 1155 are summarized. Since pipeline completion, over 70 test events have been conducted. A recent case study will detail some of the issues associated with testing. Future plans for enhancements using additional testing methodologies will be presented with particular mention of a simulation-based alternative.
Increasing concerns and attention to pipeline safety have engaged pipeline companies and regulatory agencies to extend their approaches to pipeline integrity. The implementation of High Consequence Areas (HCAs) has in particular had an impact on the development of integrity management protocols (IMPs) for pipelines. These IMPs can require that a risk based assessment of integrity issues be applied to specific HCA risk factors. This paper addresses the development of an operational risk assessment approach for pipeline leak detection requirements for HCAs. A detailed risk assessment algorithm that includes 25 risk variables and 28 consequence variables was developed for application to all HCA areas. The significant likelihood and consequence factors were chosen through discussions with the Leak Detection Risk Assessment Model Working Group and subject matter experts throughout Enbridge. The leak detection algorithm focuses on sections of pipe from flow meter to flow meter, as these are the locations that impact the leak detection system used by Enbridge. Each section of pipe is evaluated for likelihood, consequence and risk. When a high or medium risk area has been identified, an evaluation of potential Preventive and Mitigative (P&M) measures will be undertaken. A P & M Matrix has been developed to identify potential mitigation strategies to be considered for higher risk variables, called risk drivers, in the model. The matrix has been developed to identify potential risk mitigation strategies to consider for each variable used in the HCA Leak Detection Risk Assessment. The purpose of the matrix is to guide the user to consider actions identified for variables that drive the risk for the particular location. Upon review of the matrix, the user determines feasibility of the risk mitigation strategies being considered to identify an action. The paper will describe the consultative process that was used to workshop the development of this algorithm. Included in this description is how the process addressed various methods of leak detection across a wide variety of pipelines. The paper closes with “development challenges” and future steps in applying operation risk assessment techniques to mainline leak detection risk management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.