We have hypothesized that lung damage occurring in the peri-bone marrow transplant (BMT) period is critical for the subsequent generation of idiopathic pneumonia syndrome (IPS), a major complication following human BMT. The proinflammatory events induced by a common pre-BMT conditioning regimen, cyclophosphamide (Cytoxan ® ) (Cy) and total body irradiation, were analyzed in a murine BMT model. Electron microscopy indicated that Cy exacerbated irradiation-induced epithelial cell injury as early as day 3 after BMT. Allogenicity was an important contributing factor to lung injury as measured by lung wet and dry weights and decreased specific lung compliance. The most significant pulmonary dysfunction was seen in mice receiving both allogeneic T cells and Cy conditioning. IPS was associated with an influx of T cells, macrophages, and neutrophils early post-BMT. Hydroxyproline levels were not increased, indicating that the injury was not fibrotic early post-BMT. As early as 2 h after chemoradiation, host macrophages increased in number in the lung parenchyma.
Malignant histiocytosis sarcoma virus (MHSV) arose as a recombinant of c-Harvey-ras murine sarcoma virus (Ha-MuSV) and Friend mink cell focus-forming virus (F-MCFV). It is a defective acute transforming retrovirus that, along with Friend murine leukemia helper virus (F-MuLV), induces malignant histiocytosis (MH) in susceptible adult mice. We have assessed the in vivo susceptibility to MHSV in inbred homozygous, F1 hybrid, congenic, and recombinant inbred (RI) mice. We have shown that: (1) in vivo resistance to MHSV is multigenic, regulated by MHC and non-MHC genes in a different fashion than with F-MCFV, F-MuLV, or Ha-MuSV; (2) using BXD RI mice, the resistance phenotype is linked with 95.8% probability to two linked loci, Pmv-9 and Iapls3-14, on chromosome 13 (homologous to the area of human chromosome 5 for which a chromosomal break point at position 5q35 is associated with human MH); and (3) CD4+ T cells are critical for MHSV resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.