It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the "extrapolated centre of mass") at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact.
Background Lockdown has been one of the major worldwide strategies to control the spread of coronavirus disease 2019 (COVID-19). Its consequences on the well-being of individuals needs to be better understood. The objective of this work was to evaluate the impact of lockdown on the well-being of a general population and the factors associated with this potential impairment of well-being in a population that has been only lightly affected by COVID-19 such as in Reunion island, an overseas French department. Methods An online survey was proposed to the population of Reunion Island between the 35 th and 54 th days of lockdown relative to pre- and per-lockdown periods. Well-being was measured by the 5-item World Health Organization Well-Being Index, with some questions about sleep habits (Pittsburgh questionnaire), weekly physical activity (IPAQ), health, and lifestyle. Results Four hundred volunteers answered the survey. They reported a 15.7% decrease in well-being (p<0.001), accompanied by increased anxiety (p<0.001), decreased weekly physical activity (p<0.001), delayed and poorer quality sleep (p<0.001). Multivariate logistical analysis showed that impairment in well-being during lockdown was independently associated with an increase in anxiety (odds ratio (OR): 4.77 (3.26–6.98), p<0.001), decrease in weekly physical activity (OR: 0.58 (0.43–0.79), p<0.001), and poor-quality sleep (OR: 0.29 (0.19–0.43), p<0.001). Conclusions This study suggested an impairment in well-being during lockdown, associated with anxiety, lack of physical activity and sleep disruptions. Public policies must consider these factors as levers for improving the well-being of the population in order to effectively combat the spread of COVID-19.
Teddy Caderby. Influence of temporal pressure constraint on the biomechanical organization of gait initiation made with or without an obstacle to clear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.