Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second.Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.
International audienceThis paper discusses a novel strategy for simulating rare events and an associated Monte Carlo estimation of tail probabilities. Our method uses a system of interacting particles and exploits a Feynman-Kac representation of that system to analyze their fluctuations. Our precise analysis of the variance of a standard multilevel splitting algorithm reveals an opportunity for improvement. This leads to a novel method that relies on adaptive levels and produces, in the limit of an idealized version of the algorithm, estimates with optimal variance. The motivation for this theoretical work comes from problems occurring in watermarking and fin- gerprinting of digital contents, which represents a new field of applications of rare event simulation techniques. Some numerical results show performance close to the idealized version of our technique for these practical applications
This article proposes a theory of watermarking security based on a cryptanalysis point of view. The main idea is that information about the secret key leaks from the observations, for instance watermarked pieces of content, available to the opponent. Tools from information theory (Shannon's mutual information and Fisher's information matrix) can measure this leakage of information. The security level is then defined as the number of observations the attacker needs to successfully estimate the secret key. This theory is applied to two common watermarking methods: the substitutive scheme and the spread spectrum based techniques. Their security levels are calculated against three kinds of attack. The experimental work illustrates how Blind Source Separation (especially Independent Component Analysis) algorithms help the opponent exploiting this information leakage to disclose the secret carriers in the spread spectrum case. Simulations assess the security levels derived in the theoretical part of the article.
International audienceThis paper is concerned with the estimation of continuous intrinsic dimension (ID), a measure of intrinsic dimensionality recently proposed by Houle. Continuous ID can be regarded as an extension of Karger and Ruhl’s expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several es- timators of continuous ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation (MLE), the method of moments (MoM), probability weighted moments (PWM), and regularly varying functions (RV). An experimental evaluation is also provided, using both real and artificial data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.