An aromatic, diether‐linked phthalonitrile resin, prepared from 4,4′‐bis(3,4‐dicyanophenoxy)biphenyl, exhibits excellent thermo‐oxidative properties. The resin is easily processed from the melt of the monomer in a controlled manner as a function of the amine curing agent and processing temperatures. Polymerization occurs by a cyclic addition reaction without the formation of volatile by‐products. The polymerization reaction can be stopped at a prepolymer stage. The prepolymer can be stored indefinitely at ambient conditions without further reaction. The modulus and viscoelastic properties of the resin were found to be a function of the postcuring conditions.
Phthalonitrile polymers offer promise as matrix materials for advanced composite applications. The phthalonitrile monomer is readily converted to a highly crosslinked thermosetting polymer in the presence of thermally stable organic amine catalysts. Rheometric studies were conducted to elucidate the optimum amine concentration for composite formulations. High quality composite panels were processed in an autoclave using unsized IM7 carbon fibers. Mechanical properties of the phthalonitrile/carbon composite are either better than or comparable to the state‐of‐the‐art PMR‐15 composites. Dynamic mechanical analysis reveal that samples postcured at elevated temperatures (375°C) do not exhibit a glass transition temperature up to 450°C and also retain °90% of their initial modulus at 450°C. Flame resistance of phthalonitrile/carbon composites, evaluated by cone calorimetric studies, excels over that of other polymeric composites for marine applications. The composites also show low water uptake, <1% after exposure to water for 16 months.
An improved synthetic method has been developed for oligomeric aromatic ether ketone‐based phthalonitrile (PN) resins. A new curing additive was studied that lowers the cure temperature of the PN resin to around 150 °C and compared to the traditional high‐temperature aromatic diamine. Mechanical and thermo‐oxidative analyses of polymeric samples from both systems were determined and compared under various curing conditions. The PN polymer exhibited low water absorption regardless of the chosen cure system. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1662–1668
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.