Thermoresponsive
hydrogels are used for an array of biomedical
applications. Lower critical solution temperature-type hydrogels have
been observed in nature and extensively studied in comparison to upper
critical solution temperature (UCST)-type hydrogels. Of the limited
protein-based UCST-type hydrogels reported, none have been composed
of a single coiled-coil domain. Here, we describe a biosynthesized
homopentameric coiled-coil protein capable of demonstrating a UCST.
Microscopy and structural analysis reveal that the hydrogel is stabilized
by molecular entanglement of protein nanofibers, creating a porous
matrix capable of binding the small hydrophobic molecule, curcumin.
Curcumin binding increases the α-helical structure, fiber entanglement,
mechanical integrity, and thermostability, resulting in sustained
drug release at physiological temperature. This work provides the
first example of a thermoresponsive hydrogel comprised of a single
coiled-coil protein domain that can be used as a vehicle for sustained
release and, by demonstrating UCST-type behavior, shows promise in
forging a relationship between coiled-coil protein-phase behavior
and that of synthetic polymer systems.
The effectiveness of blended learning was evaluated through the integration of an online chemistry platform, LabLessons. Two modules, Titration and Formation of Hydrogen, were designed by college mentors alongside classroom chemistry teachers to engage and allow high school students to better comprehend these scientific topics. The pre-lab modules introduced the students to experiments they were expected to perform in class the following day. The modules consisted of an introduction as well as either a visualization and/or simulation specific to each topic. Students and teachers who utilized LabLessons were surveyed to establish a preliminary research on the use of technology in classrooms. Student and teacher surveys demonstrated LabLessons to be an interactive and helpful tool to improve students’ understanding of conceptual ideas.
Labeled protein-based scaffolds have become a popular biomaterial for tissue-engineered implants. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.